

GEOTHERMIC **SCENARIO MODELLING FOR HIGH TEMPERATURE UNDERGROUND HEAT STORAGE**

JULIAN MINDEL, THOMAS DRIESNER

SCCER Annual Meeting , EPFL, Lausanne, Switzerland. September 4th, 2019

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Supported by:

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Thermal Energy Storage (TES) systems are critical for improving the efficiency of energy use.

ETH zürich

- Aquifer TES systems (ATES) have great potential in comparison to other Underground TES (UTES) systems:
 - simpler design
 - high injection and extraction rates
 - large thermal heat capacity at relatively lower costs
- Feasibility of ATES systems is heavily reliant on local favorable geology.
- HEATSTORE: 1 of 9 under GEOTHERMICA ERA NET Cofund
 - Advancing the integration of Underground Thermal Energy Storage (UTES) systems with more traditional energy networks.
 - Geneva Project: Study the feasibility of an HT-ATES for seasonal buffering of ~50 GWh/yr from a waste incineration plant via water at 90 [$^{\circ}$ C] (+/-).

Schweizerische Eidgenossenschaf

Confédération suisse Confederazione Svizzera

Confederaziun svizra

SWISS COMPETENCE CENTER for ENERGY RESEARCH

SUPPLY of ELECTRICITY

Schweizerische Eidgenossenschaft Confederation suisse Confederations vizera Confederations vizera Swiss Confederation Innosuisse – Swiss Innovation Agence

ATES MODELLING PROCEDURE

- Ask questions:
 - What are the local underground characteristics? (static modelling)
 - Where will the hot water go? Can I get (most of) it back? (dynamic modelling)
- Obtain/develop/review a state-of-the-art numerical simulator with necessary characteristics.
- Due to uncertainties, develop possible dynamic scenarios based on known geology and hydrology.
- Study the efficiency of seasonal heat storage in each scenario.
- Assess the individual and combined impact of scenario parameters on the possibility of storing heat (i.e. optimize)
- Iterate.

GEO-01 (744m b.g.l.): Strike-slip fault system, E-W oriented GEO-02 (1100m b.g.l.): Thust and back-thust structures GEO-03 (1500m b.g.l.): Same as GEO-02 but deeper GEO-04 (1500m b.g.l.): Directional well in a Strike-slip fault

Figure: Illustration of the local geology, locations and targets of the planned GEOseries wells in the Geneva basin (modified from (Nawtratil del Bono, et al., 2019))

Supported by: Confedération suisse Confedération suisse Confederazione Svizzera Confederazione Svizzera Confederazione Swiss Confederation Innosuisse - Swiss Innovation Agency

SCENARIO DEVELOPMENT

Dynamic scenario parameters can be divided into three groups:

 Allowing variation in some scenario parameters permits the study of their individual and combined effects on the results.

Aquifer Permeability	Aquifer Thickness	Well Strategy	Groundwater	Fracture Configuration	Aquifer Dip
K13	L200	single	YGW	FO	FLAT
5K13	L300	doublet	NGW	FU	INCL
K12	L400	5spot		FD	

Table: Summary of sub-scenario variant codes.

Larger complexity leads to a larger parameter space. Picking the most site-relevant factors is key.

Supported by: Schweizerische Eidgenossenschaft Confederazione Svizzera Confederazione Svizzera Swiss Confederazione Innosuisse – Swiss Innovation Agence

SCENARIO PARAMETERS

- Compressible, single phase, porous media flow.
- I 5 yearly cycles: Charge (I20 days), Store (60 days), Discharge (I20 days), Store (65.25 days).
- Charging Temperature, 90 °C.
- Flow rate: 60 L/s
- Model size: 1 [km³]

Figure: (above-left) Fracture locations with respect to wells, and (above-right) the specific x-y plane view of well locations and respective names .

SCCER ANNUAL MEETING, EPFL, LAUSANNE, SWITZERLAND -- JULIAN E. MINDEL

Supported by: Confédératio

Schweizerische Eidgenossenschaft Confederation suisse Confederazione Svizzera Confederaziun svizra Swiss Confederation Innosuisse – Swiss Innovation Agency

RESULTS

- EOL exergetic efficiency analysis based on:
 (a) aquifer permeability,
 (b) aquifer thickness
 - (c) well pattern
 - (d) groundwater velocity
- Each graph represents the effect of a single parameter while coupled to all others.
- Simulation index is an arbitrary number assigned upon ordering of the data.

Simulation index

Simulation index

SCCER ANNUAL MEETING, EPFL, LAUSANNE, SWITZERLAND -- JULIAN E. MINDEL

September 4th, 2019

9of 10

Supported by: Confederation Suisee Confederation Suizera Confederazione Svitzera Confederazione Svitzera Swiss Confederation Innosuisse – Swiss Innovation Agency

SUMMARY

- We established a scenario modelling approach to help design and optimize an HT-ATES in Geneva.
- We have performed a sensitivity study analyzing:
 - Aquifer permeability, thickness, and dip.
 - Well pattern, groundwater flow, and fracture configuration.
- High permeability is not desirable...
- Thinner aquifers are more efficient...
- A 5-spot well pattern might not be cost-effective...
- Groundwater flow adversely affects efficiency.
- More iterations are needed.
- This work was also submitted as a paper to the WGC 2020 in Reykjavík, Iceland, titled "HEATSTORE: Preliminary Design of a High Temperature Aquifer Thermal Energy Storage (HT-ATES) system in Geneva based on TH Simulations (Mindel, Driesner)"