

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Balancing Hydropower Production and Environment Through Flexible Operation

Andrea Castelletti, Matteo Giuliani, Enrico Weber, and Paolo Burlando

ETHZ – HWRM

Lausanne, 13.09.2019

In cooperation with the CTI

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Hydropower has a number of benefits ...

Clean: contributing to decarbonisation

Versatile: can generate power to the grid immediately

Flexible: can be used for balancing increased variability induced by RES

... and many others

3500 new dams being planned or built around the world

... yet can generate substantial externalities

- > long-term narrowing of the active braided channel system, a decrease in pioneer vegetation stages, and a gradual maturing of the floodplain forest
- > evidence of *short-term* response following large floods, *reworking* of the *channel bed*, increase in morphological heterogeneity, *vegetation uprooting* due to scour
- > evidence of changes in tributary dynamics due to streamflow regulation

[Sturzenegger, 2005]

Can we internalize these externalities?

Traditional approach: e-flow constraint

Traditional approach: e-flow constraint

Tages-Anzeiger – Dienstag, 3. September 2019

Der Bund korrigiert das Ausbaupotenzial der Wasserkraft nach unten.

Höher als 2012 angenommen sind zudem die künftigen Produktionsverluste, die aus Umweltschutzgründen entstehen. So müssen Werke, die ihre Konzession erneuern, strengere Restwasserbestimmungen einhalten, sie müssen also mehr Wasser ungenutzt durch den natürlichen Wasserlauf lassen als bisher.

IDEA: dynamic e-flow

How to design a dynamic e-flows

by transforming the e-flow constraint into an operating target

release

DYNAMIC

Numerical experiments on the Maggia valley hydropower system

The Maggia valley – battery of the Tessin

Storage capacity: 134.22 Mm³ Annual inflow: 749 Mm³ Installed power: 600 MW Annual production: 1265 GWh

The Maggia valley – a unique riparian ecosystem

New 2018 e-flow regulation

Multi-objective modelling framework

Hydrological modelling: TPK-ETH

Setup (preliminary, historical data):

- Temporal resolution = 1 day
- Spatial resolution = 250 m

Reservoir operating policies:

- Radial basis functions (170 parameters)
- 1 million function evaluations x 20 random trials
- computational time: 5600 hours on the ETH cluster

Operational targets

Multi-objective optimization:

- maximize electricity production
- maximize revenue
- maximize ecosystem quality

How do we measure ecosystem quality?

Numerical Results

environment

Alternative strategies 2

- 1. Dynamic e-flow allows for win-win solutions
- 2. Key aspect is the definition of the environmental operating target
- 3. Coupling with high resolution ecohydrological model to assess impact on a finer scale

Thank you