

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Bundesamt für Energie BFE Office fédéral de l'énergie OFEN Ufficio federale dell'energia UFE Swiss Federal Office of Energy SFOE

The Role of (deep) Geothermal Energy in Switzerland's Energy Strategy 2050

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

BFE Bundesamt für Energie

Gunter Siddiqi, Swiss Federal Office of Energy Annual Conference 2014 Challenges and prospects for Hydro-Power and Deep Geothermal Electricity Production

After Fukushima phased exit from nuclear energy: scenario for the definition of policy measures

Another major driver – Switzerland's Climate Policy

Parallel to Switzerland's Energy Strategy 2050: In parliament private member initiatives regarding geothermal

- Mo. 11.3562
 SR Gutzwiller: Deep Geothermal Energy. Masterplan.
- Mo. 11.3563*
 SR Gutzwiller: Deep Geothermal Energy. Exploring Switzerland
- Mo. 11.4027*
 NR Riklin: Action Plan Geothermal Energy
 - *Swiss Federal Office of Energy has developed a conceptual plan and lis ooking for options to finance the exploration program

Enhanced/Engineered Geothermal Systems (EGS)

0

If there is plenty of natural hot water, then the system is hydrothermal 5

Which barriers can be overcome with the aid of government?

Governing ideas:

J

- Principal barriers for Switzerland
 - Exploration/Probability of Success
 - Accessing and developing the reservoir (incl. EGS)
 - Capabilities of participants in the (deep) geothermal industry sector
 - Robust legal framework
- Types of risk that can be carried or mitigated by the public
 - Technical: partially suitable (funded R&D, exploration)
 - Economical: partially suitable (feed-in tariffs, guarantee schemes)
 - Commercial: not suitable
 - Organizational: somewhat suitable (particularly building capabilities)
 - Political or societal: suitable (rules and regulations)
- In Switzerland: the federal government sets framework, industry executes
- Accounting for costs and affordability

See also "Risk Quantification and Risk Management in Renewable Energy Projects " (Report commissioned by the IEA – Renewable Energy Technology Development)

System test,

Development

Technology Demonstration

Technology Development

Feasibility

Research

Research to Prove

Basic Technology

Launch & Operations

System / Subsystem

Delivering technology readiness to enable commercial readiness

Complex , multi-component technology readiness levels (TRL) and their correlation to commercial readiness indices (CRI)

Hydrothermal in Switzerland - TRL 7/8 & CRI 2 EGS in Switzerland – TRL 5/6 & CRI 1

Source: Australian Government, Australian Renewable Energy Agency (2014) LOOKING FORWARD: BARRIERS, RISKS AND REWARDS OF THE AUSTRALIAN GEOTHERMAL SECTOR TO 2020 AND 2030

TRL

Detailed scenario to develop technology policies: scenario for geothermal power

0

Source: Swiss Federal Office of Energy

Why Enhanced Geothermal Systems & exploration are important

Identifying cost drivers & potential for cost reductions

Two wells to AHD 5000 m (CHF 48 mln); 17 MW_{th}, Power 3 MW_{el} (ORC: CHF 13 mln), Cost of capital 3.5%

0

Quelle: Bundesamt für Energie

Support for geothermal in Switzerland

U

Developing geothermal energy along its value chain – Funding for projects (mln CHF in 2012 – sources of federal funds)

0

* See also Dispatches on Research and Innovation 2013-16 & Coord. Energy Research

and working with the European Union

- ERANET (European Research Area Networks) Cofund Actions program owners coordinate
- European Energy Research Alliance EERA researchers cooperate
- Research and Development Framework Programs National program owners and European Commission finance

Another piece in the puzzle: storing CO₂ in the subsurface

Installed capacity: 500 MW Electricity Supply: ca. 3 TWh per year (5% of CH total) Erdgas-Consumption: 514 Mio. m³ per year (17% of CH total) CO_2 -emissions: 0.99 Mln. t CO_2 (2.5% of CH total)

Image: ALSTOM

Modern gas-fired power generation assumption: h_{el}=60%; 6000 operating hours per year

Looking into the future (Weidmann, PSI, PhD 2013)

Total discounted system costs relative to Reference scenario (*NuPhs_EB* without climate policy)

0

Figure 5.12: Comparison of additional total discounted system costs relative to the nuclear phase-out scenario with business as usual fossil fuel prices and no climate target (*NuPhs_EB* scenario) for different fossil fuel price levels (high, business as usual, medium, and low) in scenarios without climate target, with 60% CO₂ emissions reduction target, and with 60% CO₂ emissions reduction target with CCS.

Fossil fuels with CCS may provide an attractive option if new renewables cannot deliver

Unless certain requirements are met, CCS is not an option for Switzerland

- Are Switzerland's large stationary emission point sources available for CCS?
- Does industry have an interest in CCS?

O

- Can open questions (risks, liability, monitoring) be resolved?
- Will it be acceptable to the public?
- •But, also the fundamental question: *Does storage potential meet demand?*

Overall CO_2 storage potential of Switzerland appears to be worth investigating further – critical step is injectivity pilot

Source: Diamond et al., SFOE Study, 2010

Here too, a link to Europe is particularly useful to leverage capacities, capabilities and funding

Building R&D capacities and capabilities

J

- In Switzerland: Swiss Competence Center for Energy Research SCCER
- One of 8 is the SCCER Supply of Electricity which addresses CO₂ storage
- Building Research Infrastructure networks
 - Linking research infrastructures throughout Europe
 - ECCSEL the European Carbon Dioxide Capture and Storage Laboratory Infrastructure across 10 countries: Norway; France; The Netherlands; Germany; UK; Switzerland (ETHZ); Spain; Italy; Greece and Poland
- Creating opportunities to execute CO₂-injectivity pilot tests:
 - European Research Area Networks (ERANET) Cofund Action CFA on CCS: pooling national resources with top-up from the European Commission (Norway, Germany, Italy, Switzerland, Romania, The Netherlands, UK, France and Greece)

Geothermal & other subsurface energy sources are not for the faint of heart!

Deep geothermal energy in Switzerland – a mix of support measures

Technology development:

0

- 1. Build up of R&D capacity and capabilities
- 2. Increased RD&D project support

Develop resources & and technical capabilities of the industry:

- 3. Pilot- and Demo.projects
- 4. Geothermal guarantee
- 5. Feed-in tariffs

New technology

Energy Strategy 2050:

O

A scenario for power supply and demand

Energy Strategy 2050: Power from Geothermal Energy – a Long Term Option!

