

SWISS COMPETENCE CENTER for ENERGY RESEARCH

SUPPLY of ELECTRICITY

In cooperation with the CTI

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

High-end modeling requirements for the energy sector

R. Krause

A, Rigazzi, R. Müller, P. Zulian, T. Dickopf, C. v. Planta. M. Favino, J. Steiner, R. Müller

> Institute of Computational Science USI, Lugano

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH

4.3 Modeling Facility at USI

- Alessandro Rigazzi (PostDoc, SCCER-SoE)
- Cyrill von Planta (PhD student, NRP 70)
- Roger Müller (PostDoc, SPP 1748)
- Hardik Kothari (PhD student, SNF/DFG)
- Alessio Quaglino (PostDoc, SERI)

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

- NFP 70 "Energiewende" "Modelling permeability and stimulation for deep heat mining" with T. Driesner (ETH); S. Miller (Neuchâtel)
- SNF/DFG Schwerpunktprogramm SPP 1748 Project on "Large-scale simulation of pneumatic and hydraulic fracture with a phase-field approach" (Prof.Dr. K. Weinberg (Universität Siegen; Priv.- Doz. Dr. C. Hesch (KIT, Karlsruhe); SPP 1748 "Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis".
- SERI (Swiss Space Office) "Phase unwrapping Parallel Accelerator (PUPAx)" together with P. Pasquali (sarmap, TI)
- SNF/DFG project "Parallel multilevel solvers for coupled interface problems" with Prof. Dr. A. Reusken (RWTH Aachen) and Dr. S. Gro
 ß (RWTH Aachen).
- Industry project with Siemens on Uncertainty Quantification

Computational Science and HPC

Challenges in HPC and Numerical Simulation

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

• Forward Models

Fluid/Solid Mechanics

Multi-scale Models

Coupled Models (FSI, THM, ...)

• Inverse Models

Parameter/geometry Identification Subsurface flow

• Large scale: HPC

High resolution

Massively parallel

Hardware/Software co-design (GPUs, hybrid systems) New methods (time parallel ...)

• Reducing response time

Reduced basis

Reduced scale physical model

- Constrained Optimization
 Range of Operation/Efficiency
 Data assimilation
- UQ Uncertainty Quantification

Communication of Results

- Parameter Sensitivity
 Free Interfaces and Surface Effects

 Contact and Fracture / Erosion
 Multi-scale approaches
 Mesh handling
- Workflow

Simulation - Experiment - Validation - Application Geometry handling, meshing Merging of Data and Simulation: Data driven simulation

• Software Development and Maintenance Usability/Maintenance

SWISS COMPETENCE CENTER for ENERGY RESEARCH

Challenges in HPC "Do not save flops, save energy"

	Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS
--	---	---------------------------	---

(a) From http://www.top500.org

(b) Courtesy of H. Sutter. http://www.gotw.ca/

- Accessing data is more energy intensive than computation
- Moving data over large distances takes more time and more energy
- Current hardware is not designed for numerical simulation (many applications run at 2%-5% of peak performance)
- Algorithms have to be adapted:
 - Hardware/software co-design
 - High concurrency (EXASCALE)
 - Increased arithmetic density
 - Asynchronous methods
 - Parallelism in time
 - Adaptivity

How to exploit modern HPC systems?

The Supercomputing Paradox Faster hardware can slow you down

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

Gaußian elimination

SUPPLY of ELECTRICITY

 Gaußian elimination for sparse Matrices:

2n

• Schwarz methods:

For increasing problem size, methods without optimal complexity will lead to unacceptable computation time.

TENCE CENTER for ENERGY RESEARCH

Efficient Solvers for frictional contact with Finite Elements

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

von Mises stress

Linear sparse solver pardiso

#dof	#nodes	decomp time (s)	peak memory
14.739	4.913	6,58	0,101GB
32.937	10.979	18,7	0,232GB
107.811	35.937	351,62	1,1GB
159.771	53.257	402,89	1,9GB

Frictional stresses on the surface

Non-smooth Multigrid for frictional contact [K' 01]

$\mathcal{F} = 0.3$, TOL = 10^{-12}		
#dof	#nodes	solution time
14.739	4.913	11,59
107.811	35.937	82,81
823.875	27.4625	856,1

Optimal solvers (right) allow for treating larger problems

Resolve local effects I- Adaptivity Reliability and Efficiency

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

PETENCE CENTER for ENERGY RESEARCH

Adaptive refinement for contact with a rough surface [Rigazzi, K' 14]

A posteriori error estimator for contact problems Adaptive refinement for contact with a "smiley" error for uniform and adaptive refinement Sharp upper and lower estimates [Veeser, Walloth, K' '12]

Adaptive refinement for a time dependent phase field model [K', Kornhuber '06]

8

Resolve local effects II Multiscale Modeling for Fracture

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

- SUPPLY of ELECTRICITY
 - Finite element method (mostly used)
 - Meshless methods (Promising (E.G. Ortiz, Caltech))
 - Different FE approaches
 - 1. simple models: change of elasticity modules in the body
 - not enough details
 - Iost directionality of cracks
 - homogenization techniques remove the discrete nature of cracks
 - 2. Single mesh approach
 - Crack propagates along mesh edges, duplication of nodes
 - 3. adaptive remeshing techniques
 - usually employes different meshes for domain and crack
 - 4. Extended FE methods
 - the discontinuity is not limited to interelement boundaries
 - additional displacement degrees of freedom are introduced but not additional mesh verteces

Multiscale Modeling for Fracture Micro (MD) and Macro (FE)

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

• Introduce Lagrange multiplier $\lambda \in M$ $H_{tot} = \alpha h + (1 - \alpha)H + \lambda \cdot g$ Differential Algebraic Equations

Multiscale Coupling Molecular Dynamics - Finite Elements

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

- Scale transfer can lead to pollution effects at the interface
- Our approach: variational transfer (discrete L² projection) and PML at the interfaces

- RATTLE with $\tau = 0.005$
- Damping at interface
- Lennard-Jones Potential with $\mathcal{E} = 1, \sigma = 1$ and linear elasticity

[K. Fackeldey, D. Krause, R. Krause 2008]

- Resolve crack-tip region with molecular dynamics (MD) simulation
- MD region must follow crack (adaptively) or must be chosen sufficiently large (a-priori)
- But: branching/bifurcation, emission of line dislocations, ... destroy locality
- Huge computational demand
- Complex coding, load balancing difficult

[D. Krause, R. Krause 2009]

SCCER

SUPPLY of ELECTRICITY

SoE

Phase Field Approach for Fracture

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Introduce free energy for damage parameter d

1-d crack formation

 $d(x) = e^{-|x|/l}$

This solves the diff. equation:

 $d(x) - l^2 d''(x) = 0$

which is the Lagrange equation that results from the variation of the functional:

$$I(d) = \frac{1}{2} \int_{B} \{d^{2} + l^{2}d'^{2}\}dV$$

in 3D
$$\Gamma_l(\mathbf{d}) := \int_B \frac{1}{2l} \mathbf{d}^2 + \frac{l}{2} \nabla(\mathbf{d}) \cdot \nabla(\mathbf{d}) dV$$

Phase Field Models for Fracture

Ur de Sv ita	niversità ella rizzera iliana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Pictures from: C. Hesch, K. Weinberg; Int. J. Numer. Meth. Engng. 99(1097), 2002

Development and Challenges in Computational Science

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

Exploiting Parallelism: Solution Methods

Coupled Problems

Fluid Structure Interaction [Steiner, K, '14]

Optimal parallel solution methods

- Domain Decomposition (Schwarz methods)
- Multigrid methods

Poroelasticity: Compression of a cylindrical specimen [Favino, K', '13, '15]

Fluid Structure Interaction

Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Bi-Conjugate-Gradient Stabilized (BiCGStab) with different preconditioner

Restricted additive Schwarz method

 $U^{k+1} = U^k + (\sum_{i=1}^M Q_i)(f - AU^k)$

with a preconditioner

$$\sum_{i=1}^{M} Q_i = (R_0)^T A_0^{-1} R_0 + \sum_{j=1}^{N} (R_j^0)^T A_0^{-1}$$

• and a geometric multigrid method

Additive Schwarz (geometric explicit):

LPS

-SKW

-UDS

512

POS

[J. Steiner, R. Krause 2014]

Parallelize in space saturates

	Università della Svizzera italiana	Faculty of Informatics	Institute of Computational Science ICS
--	---	---------------------------	---

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

- Traditionally, decomposition is done only in space
- Time is discretized sequentially

Figure : CPU photo courtesy of Eric Gaba.

Use time as an additional direction for parallelization (PARAREAL, PFASST, MGRIT, ...)

Parallelize in time and space

UI de Sv ita	niversità ella <i>v</i> izzera aliana	Faculty of Informatics	Institute of Computational Science ICS

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

- # cores (large example) 32,768 65,536 131,072 8,192 16.384 262.144SPEED PEPC+PFASST, 4M particles 8 LIMIT 8192 Speedup from PFASST SPEED LIMIT PEPC+PFASST, 125k particles 2048 4,096 8,192 16,384 32,768 65,536 2,048 # cores (small example)
- Speedup through parallelization in time for fluid flow (Navier Stokes)

- multiphysics, hybrid implementation of the 'Hashed Oct-Tree' scheme
- here: vortex particle method
- 4th order time integration with dt = 0.5 and [0, T] = [0, 16]
- small setup with 125k and large setup with 4M particles
- strong scaling saturates at approx.
 2,048 and 8,192 cores on IBM BG/P

