

Annual Conference 2015

Challenges and prospects of HydroPower and Deep Geothermal electricity production in Switzerland

Neuchâtel, September 10-11, 2015

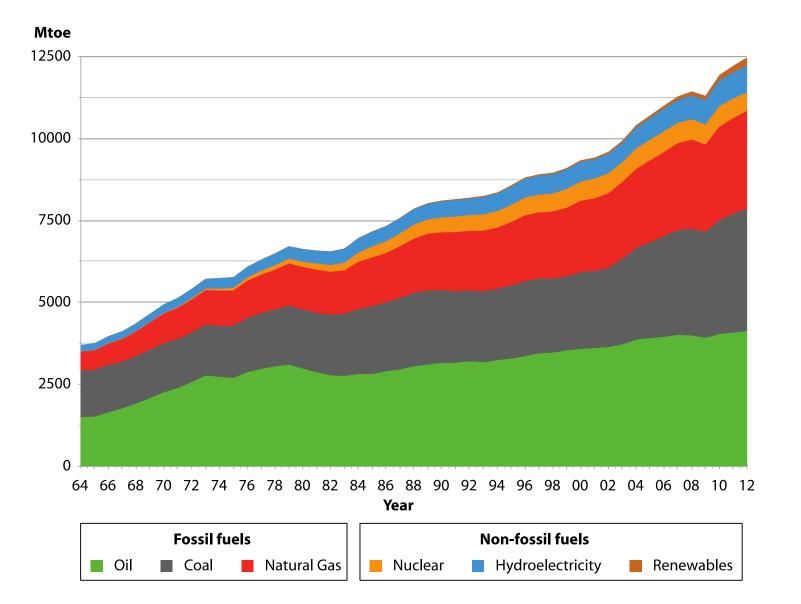
Prof. Domenico Giardini Head, SCCER-SoE In cooperation with the CTI

Energy Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

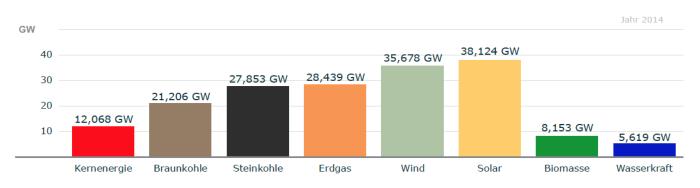
Swiss Confederation

Commission for Technology and Innovation CTI

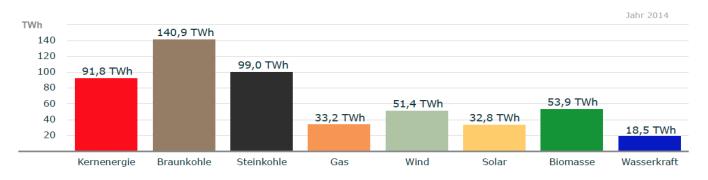


CO₂ emissions and GHG atmospheric concentrations ...

World Energy Consumption


The new renewables' challenge

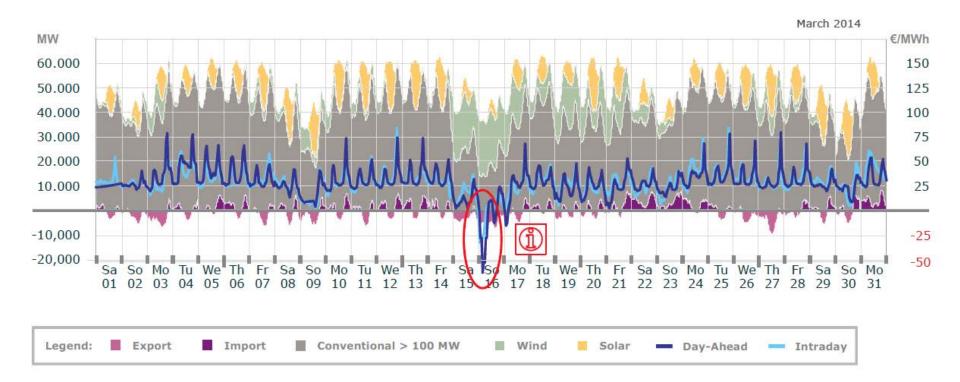
- ✓ Low efficiency \rightarrow 10-20%
- ✓ Still more expensive than fossils (4-20 times)
- ✓ Stochastic: Solar-Power, Wind-Power
 - Intermittent
 - Every MW installed must be matched by storage (i.e. hydro), other technologies (i.e. gas), or trade
- ✓ Band-electricity:
 - Geothermal: so far successful only in volcanic areas
 - Biomass/biofuels: higher efficiency, but so far successful mostly with primary agricultural production



Germany: electricity production 2014

Installierte Netto-Nennleistungen

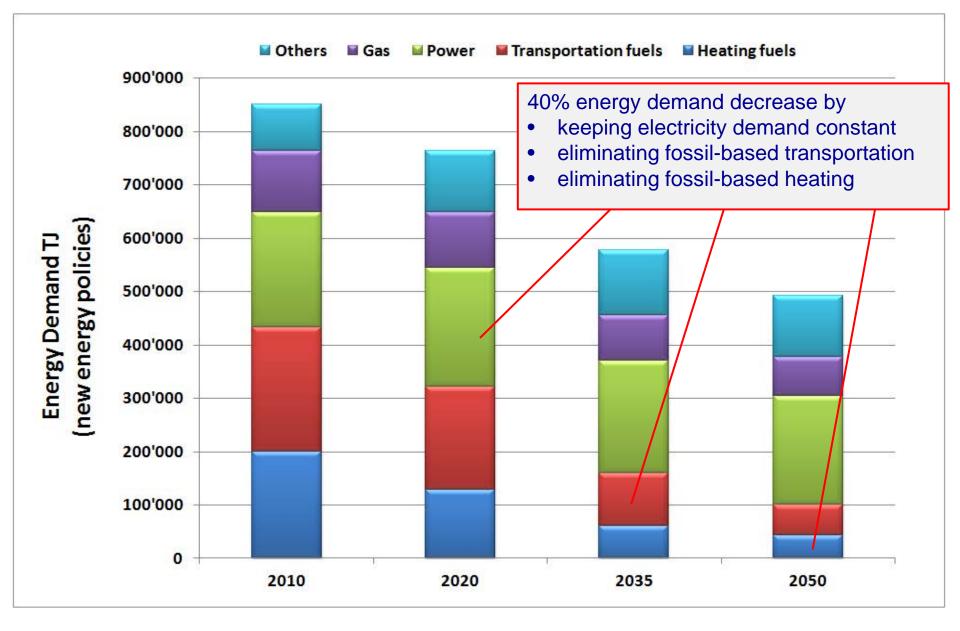
Nettostromerzeugung 2014


✓ Production: 18% nuclear, 52% fossils, 30% renewables

✓ Utilization/efficiency: nuclear and biomass high, wind and solar low (17%, 11%)

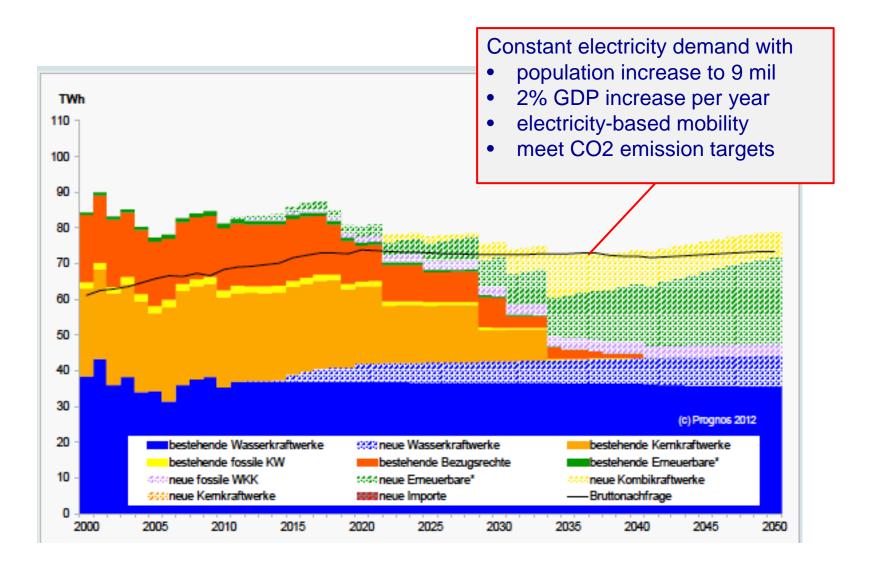
✓ Export: 38 TWh/yr and growing

Germany: electricity production 2014

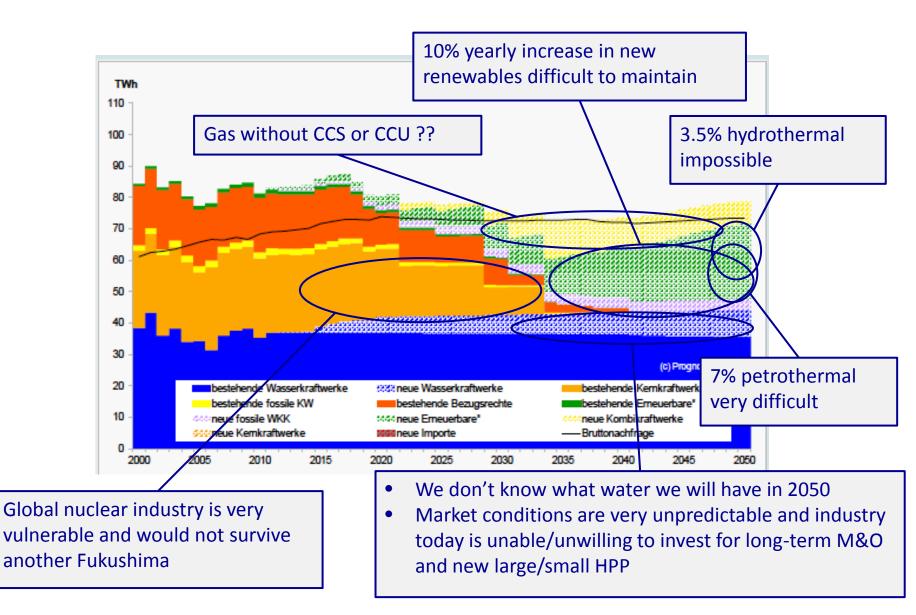

- ✓ Daily and weekly cycles
- Increasing role of intermittent SP and WP
- Spot-prices: day-ahead and intraday (15 min updates)
- Increasing and longer episodes of over-production and negative electricity spot-prices (over 4 combined days in 2014)

SCCER SOE Decreasing push for new renewable energy

- According to the IEA, the world is falling behind in every indicator and technology required to keep atmosphere warming within 2° C
- Solar-Power currently supplies less than 1% of global electricity; in Germany, the largest SP producer in the world, PV installation decreased for the 4th year and half of the PV workers have been laid off
- ✓ The only commercial-scale coal-fired power plant equipped with CO2 capture opened in 2014 in Canada
- ✓ The increase in global energy demand will not stop → 20% of households in India do not have yet electricity
- ✓ Global oil consumption stands at 90 million barrels per day; oil price is now below 40 US\$ per barrel and still decreasing
- ✓ In 2014, global investments declined for the 4th year, to 250 B\$, and venture capital investments were only 25% of the 2011 level, at 1 B\$
- ✓ The US/DOE budget for energy research is 2% of the federal R&D budget

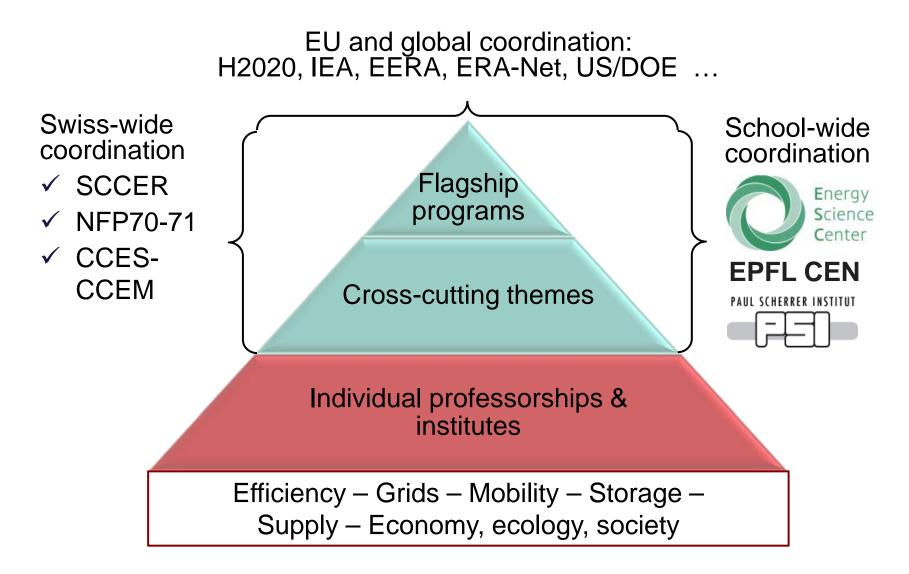


Swiss ES2050: energy demand



Swiss ES2050: electricity demand

Swiss ES2050: supply of electricity


Electricity supply

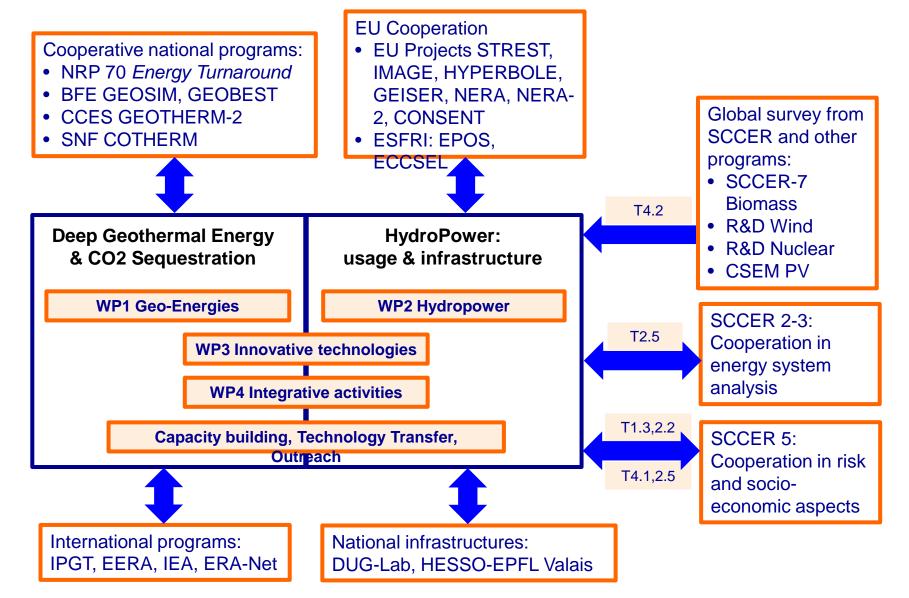
The SCCER-SoE was initiated on November 1, 2013, to respond to three questions posed by the Bundesrat and Parliament for the supply of band electricity:

- 1) can we extract safely the deep geothermal heat and produce at competitive costs a substantial portion of the national electricity supply, covering up to 5-10% of the national baseload supply?
- 2) is the geological capture of CO2 a viable measure to enable carbon-free generation of electricity from hydrocarbon resources ?
- 3) can we increase (i.e. by 10%) the present hydropower electricity production under changing demand, climate and operating conditions ?

Energy Research in Switzerland

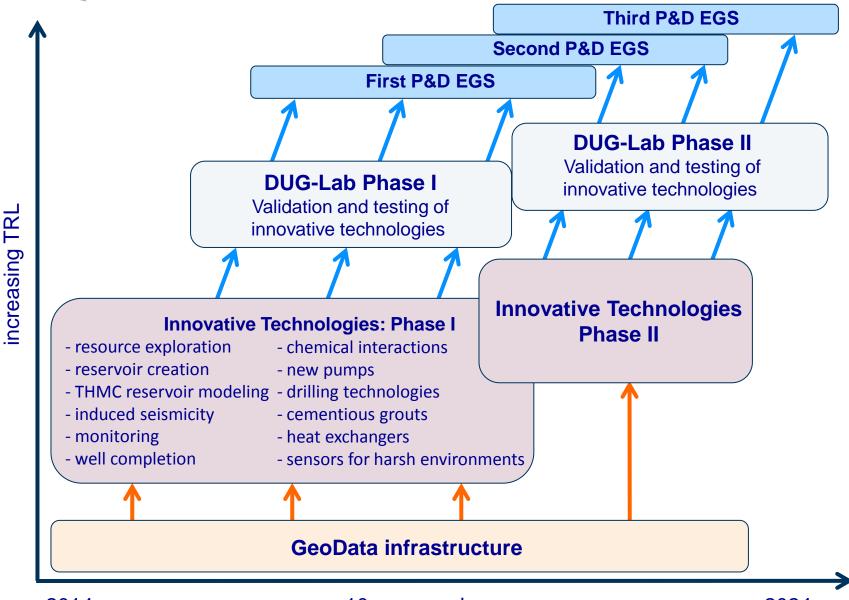
- ✓ Phase I: 1.11.2013-31.12.2016
- ✓ CTI budget: 12 mln Fr
- ✓ 2 thematic WorkPackages and 3 transversal activities

Deep Geothermal Energy & CO2 Sequestration		HydroPower: usage & infrastructure	
WP1 Geo-energies T1.1 Resource exploration, assessment and characterization T1.2 Reservoir modeling and validation T1.3 P&D for reservoir creation T1.4 Geo-data infrastructure		WP2 Hydropower T2.1 Morphoclimatic controls of future HP production T2.2 Socio-economic drivers of future HP production T2.3 HP infrastructure adaptation T2.4 Environmental impacts of future HP operating conditions T2.5 Integrated simulation of HP systems operation	
WP3 Innovativ T3.1 Geo-energy technologies		ve technologies T3.2 Hydraulic machines	
	T4.1 Risk, safety and so T4.2 Global observatory T4.3 SCCER-SoE mode	y of electricity resources eling facility	
	nology Transfer, Outreach		


Facts and Figures

- ✓ 13 academic and 10 cooperation partners
- ✓ Capacity building (CTI) completed by Nov 2014:
 - 42 new researchers supported by CTI, as many in-kind
 - 7 new professorships in geo-energies (ETHZ, EPFL, UniGe, UniNe)
 - Matching funds on target
 - Over 50 PhDs already funded
 - Overall, about 200 new researchers/PhD/professors
- ✓ Innovation roadmaps for DGE, HP, CCS
- ✓ A new R&D mechanism, for true swiss-wide cooperation, national coordination and integration
- ✓ Strong alignment with SFOE (P&D)
- ✓ A shift towards "big science": NRP, KTI clusters, H2020
- ✓ Evaluation 2014 positive, funding 2015 confirmed
- ✓ Strong EU presence (Hyperbole, Strest, Consent, EPOS-IP, NERA-2, ...)

Integration across programs



Roadmap Hydropower 2014

Hydropower challenges In Switzerland Energy Strategy 2050		 > Climate change > Electricity demand and energy market > Winter and peak energy production > Environmental flow, hydro- and thermo-peaking > Severe operation conditions 			
Today's usage conditions		10yr work plan		Improved usage conditions	
New large hydropower plants until 2050 		Climate and glacier extension scenarios Water availability and natural hazard secenarios Snow and glacier melt forecast system Prediction of sediment load Analysis of future market conditions Effice nt sediment evacuation systems Stability of surge tanks		New large hydropower plants until 2050	
New small hydropower plants until 2050	Flexible winter and peak energy production 1530 GWh in 2050	Fluid-structure interaction Non-intrusive measurement techniques Air entrainment and floating debris Increase of storage capacity Increase of installed capacity Dam heightening and key organs Multipurpose compensation basins Structural safety after dam heightening		1430 GWh New small hydropower	
1290 GWh Extension and adaptation of existing large	Effect	Small scale turbining and propeller turbines Reduce friction and water losses Improved flushing devices Potential of glacier lakes	Flexible winter and peak energy production	plants until 2050	
hydropower plants until 2050	of GSchG	Impact of hydro- and thermo-peaking Impact of small hydro on ecosystems New environmental flow criteria	3160 GWh in 2050	1600 GWh	
870 GWh	-1400 GWh	Operation range of turbines and pump-turb. Silt erosion in turbine components New turbines for water supply networks Fatigue in turbine blades Integrative activities	Effect	Extension and adaptation of existing large hydropower plants until 2050	
Task 2.2 Tasl	< 2.4 < 3.2 < 2.5	Integrated simulation of hydropower systems operation	GSchG	1530 GWh	

Roadmap DGE 2014

- ✓ Review R&D progress
- ✓ Integrate energy research across Switzerland
- ✓ Build common identity
- ✓ Increase drive towards solution-oriented breakthrough
- ✓ Involve and exchange with stakeholders
- ✓ Identify challenges and prospects
- ✓ Confirm our roadmaps
- ✓ Prepare 2015 evaluation
- ✓ Plan 2017-2020 phase