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Cumulative number of earthquakes

The challenge of mitigating induced seismicity SCCERSSOE
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Traffic-Light Systems (TLS) as a solution SCCER 5 SoE

v" Consists in minimizing induced seismicity based on:
» Decision variable (e.g., earthquake magnitude, peak
ground velocity)
» Threshold value above which actions are taken (e.g.,
reduction or stopping of injection) :
v Tools still inherently heuristic & mostly based on expert ;
elicitation
» Different regulations in different regions
i -1

» How are those magnitude thresholds chosen?
. . California  lllinois Ohio  Alberta
» How do they relate to risk? (risk-based safety norms Columbia
in other hazardous industries, e.g., chemical plants) source: Bosman et al. (2016)
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Traffic-Light Systems (TLS) as a solution SCCER 5 SoE

California lllinois Ohio Alberta  British
Columbia

source: Bosman et al. (2016)
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v" One of the goals of T4.1 “Risk, safety & public acceptance” is to propose an actuarial approach to
this problem in the scope of a TLS-based induced seismicity risk governance framework

AUTHORITIES
(promote energy business + public safety)

potential enforces requests
subsidies / TLS use safety

PUBLIC

BUSINESS FIRM
o w
(EGS-based energy) sales energy (needs energy + safety)



A closer look at what happened in Basel, 2006 SCCER5$0E
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2006 Basel EGS data sources:
Haring et al. (2008); Time t from injection start (days)

Kraft & Deichmann (2014) source: modified from Mignan (2016)



Induced seismicity rate model SCCER5$0E

E & injection phase bleeding-off phase
v’ Linear relationship between S 2 §
flow rate AV(t) and induced 2 =
seismicity rate A(t) £ 27
s
v Overall activity or “underground =
feedback” represented by ay,
o
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v" Normal diffusion in post- 2 8 A
injection phase with mean § 8
relaxation time T é e -
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2006 Basel EGS data sources: 0 2 4 6 8 10
Haring et al. (2008); Time t from injection start (days)

Kraft & Deichmann (2014) source: modified from Mignan (2016)
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Deep fluid injections around the world
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v Simple model fits reasonably
well most of the sequences
(based on MLE & KS test)

High variability of
underground feedback
> -2.8<03,<0.1m3
> 0.8<b<1.6
» 0.2 <t<20days

Second-order deviations
from model still to be
understood
» Missing on-site data?
» Second-order physics?



Developing a TLS based on the rate-model (1/2) SCCER5$0E

modified from Mignan et al. (in rev., Sci. Rep.)

= 3 =
v Let us define a risk-based safety norm (for V=10,000m3, 4km depth, d=0km from borehole)

» Fixed to Pr(fatality) = Y = 10° e =
» Risk of earthquake damage o
assumed to be insured U
v" Can be mapped into magnitude space potential
> Poisson process with Pr(>m,,) = . undersampling
1-exp N(zm,,) o - <€
» Total number N obtained by
integrating rate model
v’ Closed-form means 2 -
» Almost instantaneous
computation

» Robust & transparent | |

Pr(m = msaf) =1- exp{_loafb_bmsaf [V(tshut—in) + TV(tshut—in)]} =Y I




Developing a TLS based on the rate-model (2/2)

Simulation of 2006 Basel time
series
» Stochastic process based
on rate model

Temporal evolution of (ag,b)
» Risk evolves with time
> Adaptive TLS (ATLS)

TLS definition
» Stop injecting above m,,

TLS validation
» Over millions of
simulations, we observe
that the safety norm is
respected in average
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Hierarchical Bayesian forecasting SCCER550E

v Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting

v Bayesian online updating, including uncertainty quantification
v Predicts both the number of events & the expected maximum magnitude

v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting

SCCER 5 SoE

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude

v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting SCCER550E

v Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.

Current time: day: 2, hour: 0; Check

T T T T T
3
o —
=] =]
E 2 =l
g iE
£
=
R H—HJM 41
0 I I I I I )
0 2 4 6 8 10 12
[days]
80 0.5
60 | .04
= =03
Q40 )
E’ é 0.2
20 b ,/i T os
0 . 0 JN“IMH
0 2 4 6 8 10 12 20 40 60
[days] N{(t+4[h])
3.5 15
3k
o 251 =
ERr 8
E::- 15¢ i 33
-~ 1L =
0.5+
0 | | I 1
0 2 4 6 8 10 12
[days] m

source: Broccardo et al. (submitted)



Hierarchical Bayesian forecasting

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude

v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting SCCER5$OE

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting SCCER5$0E

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting SCCERgsoE

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting SCCER 5 SoE

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude

v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting

v’ Bayesian online updating, including uncertainty quantification
v’ Predicts both the number of events & the expected maximum magnitude

v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting
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Bayesian online updating, including uncertainty quantification
Predicts both the number of events & the expected maximum magnitude
v See SCCER-SoE T4.1 poster by Broccardo et al.
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Hierarchical Bayesian forecasting
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Bayesian online updating, including uncertainty quantification
Predicts both the number of events & the expected maximum magnitude
See SCCER-SoE T4.1 poster by Broccardo et al.
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Next steps

AUTHORITIES

SCCER 5 SoE

(promote energy business + public safety)
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v Consider the impact of a TLS on the EGS business
(see poster “The price of public safety in EGS
projects”)

» Seismic risk turned into increased price/kWh

» Decision-making under uncertainty to quantify
stakeholders’ behaviour

requests
safety

PUBLIC
(needs energy + safety)

SCCER-SoE Annual Conference 2017 b

The price of public safety in EGS projects

A. Mignan, M. Broccardo, S. Wiemer & D. Giardini

Abstract
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Next steps

AUTHORITIES

(promote energy business + public safety)

enforces requests
TLS use/ \safety

PUBLIC
S (needs energy + safety)
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SCCER 9 SoE

v Improved physical model of induced seismicity
» Changes of injectivity; pressure minimum
threshold? (insights from DUG-Lab)
» Could provide smarter strategies, e.g.,
modifying injection profile instead of brutal
stop
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Next steps SCCER gsoE

AUTHORITIES
(promote energy business + public safety)

enforces requests
TLS use/ \safety
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v' TLS in legislations & public acceptance (SOoE-CREST
JA)
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