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Renewable energy changes the electricity system
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— Distinguishing between centralized and decentralized generation
— Representing electricity grid from high to low voltage
— Identifying storage options and new business models, e.g. prosumers

— Assessing interactions between demand and supply

— Capturing the intra-annual variability of renewable generation and demand

Main challenges in electricity modelling but very important to model the full energy system since (1)
electricity is fundamental for the overall efficiency improvement; (2) necessary for optimal (with view to
efficiency, cost, climate protection goals, etc.) allocation of electricity to specific demand sectors:




Methods, Models and Databases SCCERS SoE
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New Technologies
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Criterion

RESOURCES
Energy Resources
Mineral Resources (Ores)

IMPACT ON ECOSYSTEMS
Impacts from Normal Operation
Impacts from Severe Accidents

WASTES
Special Chemical Wastes stored in Underground Depositories

Medium and High Level Radioactive Wastes to be stored in
Geological Repositories
IMPACTS ON CUSTOMERS
Price of Electricity
IMPACTS ON OVERALL ECONOMY
Employment
Autonomy of Electricity Generation
IMPACTS ON UTILITY
Financial Risks
Operation
SECURITY/RELIABILITY OF ENERGY PROVISION
Political Threats to Continuity of Energy Service
Society Economy Flexibility and Adaptation
POLITICAL STABILITY AND LEGITIMACY
Potential of Conflicts induced by Energy Systems.
Necessity of Participative Decision-making Processes
SOCIAL AND INDIVIDUAL RISKS
Expert-based Risk Estimates for Normal Operation
Expert-based Risk Estimates for Accidents
Perceived Risks
Terrorist Threat
QUALITY OF RESIDENTIAL ENVIRONMENT
Effects on the Quality of Landscape

Noise Exposure

Sustainability Criteria
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Today's Tomorrow's
generation generation

EcoNowmic DIMENSION | ENVIRONMENTAL DIMENSION

South/East
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Source: Hirschberg et al., 2007&2008



The Swiss TIMES energy systems model (STEM)

SCCER S SoE

* Energy systems models are the main tool for assessing long-term transformation strategies

« The STEM model represents the Swiss energy system from resource extraction to end-uses

* Itis a bottom-up cost optimization model with long time horizon (2015 — 2100)

* It has high hourly resolution and high technological detail (> 350 processes/technologies)

* Significant development has been done in STEM to respond to the electricity sector’s challenges

Swiss TIMES Energy system Model (STEM)
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Centralized vs decentralized supply & grid levels

* Each grid level is differentiated in terms of transmission cost and losses
* Different types of power plants and storage options can be connected to each level
* Alinearized approximation of the power plant unit commitment problem (dispatch) is formulated

* This structure allows for capturing the effect of incentives for decentralized generation and the benefits
of own consumption and/or selling excess supply to upper grid levels (prosumers)

REPRESENTATION OF CENTRALIZED/DECENTRALIZED GENERATION
AND DIFFERENT GRID LEVELS IN THE STEM MODEL
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ELECTRICITY GENERATION MIX IN 2050
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Representation of transmission grid SCCER g SoE

* The detailed transmission grid is mapped to an aggregated grid with 15 nodes and 319 lines

* The mapping is based on a fix disaggregation of the reduced network injections to detailed network
injections, by taking into account the grid transmission constraints

* This structure allows for evaluating the impact of grid congestion on electricity supply and demand

REPRESENTATION OF AGGREGATED IMPACT OF GRID CONGESTION IN MARGINAL IMPACT OF GRID EXPANSION IN

ELECTRICITY TRANSMISSION GRID COSTS OF ELECTRICITY, 2050 (Reference) CLIMATE CHANGE COSTS, 2020-50
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Capturing the variability of renewables SCCER 9505

* The variability of RES is based on the variance of mean RES production in each hour and for each
typical day represented in the model over a 20-year bootstrapped sample

* This allows to assess the storage requirements to balance the RES production

* High shares of VRES require electricity storage peak capacity of ca. 30 — 50% of the installed capacity of
wind and solar PV (together)

* About 13% of the excess summer VRES production is seasonally stored in P2G

VARIABILITY OF SOLAR PV GENERATION IN ELECTRICITY FROM WIND AND SOLAR PV VS INSTALLED PEAK
A SUMMER TYPICAL DAY IN THE STEM MODEL STORAGE CAPACITY IN DIFFERENT SCENARIOS AND YEARS
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SCCER gSOE

Features of PSl’s analytical framework for
comprehensive energy systems modeling

* Strong technological basis

* Scope covers environmental, economic and social dimensions

* Variety of methods, models and databases

* Inter-disciplinary technology assessment coupled with system models

* Integrative approaches combining knowledge with stakeholder preferences

* Systematic approach to modeling and assessing prospective tchnological
advancements

* Endogenous capacity expansion
* Systematic extension of system models within a modular framework

* Representation of whole energy system with detailed modeling of demand
sectors (e.g. mobility)

* Coupling of bottom-up technology rich system models with grid

* Geographic coverage (CH, Europe, China and other regions, global)

* Temporal resolution and striving for increased spatial resolution

* Ongoing developments towards integrating behavior in system models

* Continuity and expandability
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