

The role of Mountain PV and Wind in a fully renewable Swiss Energy World

Annelen Kahl, Jérôme Dujardin, Bert Kruyt, Stuart Bartlett, Michi Lehning

SCCER – WSL - Conference

Challenges: Mismatch in supply and demand

Mismatch in time:

1. Throughout the day

Can be alleviated by conventional and pumped hydropower

Critical to penetration of RES in the future energy market – Needs to be addressed!

2. Throughout the year

Resulting mismatch

- Potential of PV in (Snowy) Mountains
- Potential of Wind in Switzerland (Mountains)
- Integration in the Swiss Power System

The Environmental Drivers (Solar)

The higher the better !!

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

PV - Method: Model production potential based on satellite-derived information and panel tilt

SCCER **S**oE SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Scenario Comparison Urban, Mountain Snow, No Snow

Required surface area to produce 12 TWh

Wind: Intermittent Wind Resources: Potential and Potential Risk

- The risk of "no wind power" for extended time periods is very variable across Switzerland and can be minimized by a good choice of location (high elevations).
- Winters (when there is an energy gap) are more productive and less risky

Wind Energy Yield increases with Elevation

Optimization of PV Placement with Power Flow Model

SUPPLY of ELECTRICITY

Line use, import - export, water management,

Where we should build PV

- Increased Yield (+ 18%)
- Decreased interannual variability (ca. 60% in Winter) and therefore less import
- No grid overload, in fact smaller average load than today

Conclusions

- Replacement of Nuclear with Wind (40%) and Solar (60%) is technically feasible and realistic
- High elevation locations facilitate energy change – let it snow!
 - More and more stable winds
 - Reduce the winter gap with PV siting and larger tilt
- No grid overload, in fact smaller average load than today
- Import / Export at current level

FÉDÉRALE DE LAUSANNE

Future - Solution

- PV on mountain buildings and other infrastructure, e.g. avalanche defense structures (St. Antönien)
- Find best locations for mountain wind installations and then "Good Luck"
- Storage?
- Move PV and Wind (not Hydro) into the mountains this helps close the winter gap

SUPPLY of ELECTRICITY

VISS COMPETENCE CENTER for ENERGY RESEARCH

