Numerical Modeling of Thermal Convection in Multiple Fractures

James W. Patterson

ETHZ – Swiss Federal Institute of Technology Zurich

Natural Convection

- Soultz-sous-Forêts
 - Geothermal gradient in crystalline basement cannot be entirely due to conduction
 - Basement rock permeability too low for Rayleigh convection
 - Fractures provide conduit for fluid
- Convection thought to occur within fractures

Single Fracture

- Natural convection forms "cells"
- Key Factors:
 - Fracture aperture (0.5 & 0.75 mm)
 - Basal heat flow (85 mW/m²)
 - Rock thermal conductivity (2 W/m/K)
- Low permeability host rock (10⁻¹⁸m²)
 - Closed loop system
 - Upward flow offsets downward flow

- Model: 4km height, 5km length, 5km width
- Fracture: 1km height, 2km length, variable aperture

EHzürich

Single Fracture

Fracture aperture = 0.50 mm Model time ≈ 20,000 years

2 km

Fracture aperture = 0.75 mm Model time ≈ 4,000 years

2 km

SCCER-SoE Annual Conference 2017

Single Fracture – slice through middle

Fracture aperture = 0.50 mm

Single Fracture – slice through middle

12

Fracture aperture = 1.0 mm

EHzürich

Multiple Fractures

- Fractures and faults typically come in sets
- Does a convecting fracture influence nonconnected, neighboring fractures?

Left: Faulds et al. 2010, Characterizing Structural Controls of Geothermal Reservoirs in the Great Basin, USA, and Western Turkey Right: Rouse et al. 2012, An exceptional rocky shore preserved during Oligocene (Late Rupelian) transgression in the Upper Rhine Graben (Mainz Basin, Germany)

ETH zürich

Multiple Fractures

Fracture aperture = 0.75 mm Model time \approx 4,000 years

ETH zürich

Multiple Fractures – Heterogeneous Aperture

SCCER-SoE Annual Conference 2017

ETH zürich

Multiple Fractures – Heterogeneous Aperture

Heat Flow Through Fractures

- Increasing fracture perm...
 - convection initiates earlier
 - transports more heat

Heat Flow Through Fractures

- Increasing fracture perm...
 - convection initiates earlier
 - transports more heat
- Decreasing fracture spacing...
 - convection initiates earlier
 - Enhanced heat flow in low-perm fractures
 - Reduce heat flow in high-perm fractures

Conclusions

- Convection "syncs" across fractures
- Large-scale convection and temperature anomaly patterns emerge
- Fundamental behavior of convection in basement rock
- Aid in site selection

Thank you