Università	Institute of
della	Computational
Svizzera	Science
italiana	ICS

< □ > < 個 > < 注 > < 注 > ... 注

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

A Fictitious Domain Method for FSI Simulations

Maria Nestola, Patrick Zulian, Rolf Krause

Postdoctoral Research Associate, Institute of Computational Science Università della Svizzera italiana

SCCER-SOE Conference, September 15th, 2017, Zurich a Development of a software for simulating the interaction between a fluid and a solid structure based on the embedded boundary method

b Efficient handling of the data transfer between the fluid and the solid mesh

• Several approaches have been developed to reproduce the interaction between a fluid and a solid structure:

Boundary-fitted method

Guarantees accurate results at the interface between the solid structure and the fluid flow.

Scenarios with large displacements \rightarrow distorted fluid grid may affect the numerical stability of the problem and the accuracy of the solution.

• Several approaches have been developed to reproduce the interaction between a fluid and a solid structure:

Embedded Boundary method

Designed to embed the solid phase within the fluid phase, enabling the calculation of the FSI effect on a stationary fluid grid which can be analysed in a purely Eulerian fashion.

niversità Institute o fla Computat izzera Science flana ICS

Solving the FSI problem implies the necessity to couple a fluid and a structure problem.

Requirement

- 1. transfer of data between different non matching meshes non conforming approximation spaces
- 2. numerical simulations of complex and large scale problems
- 3. use of supercomputers: meshes aritrarialy distributed among processors

The way the transfer operators are constructed affects **convergence**, **accuracy** and **efficiency**

Iniversità Institute o lella Computat vizzera Science aliana ICS

Solving the FSI problem implies the necessity to couple a fluid and a structure problem.

Requirement

- 1. transfer of data between different non matching meshes non conforming approximation spaces
- 2. numerical simulations of complex and large scale problems
- 3. use of supercomputers: meshes aritrarialy distributed among processors

The way the transfer operators are constructed affects **convergence**, **accuracy** and **efficiency**

L²-projection MOONoLith: library developed at ICS (http://moonolith.inf.usi.ch)

Krause, Rolf, and Patrick Zulian. "A Parallel Approach to the Variational Transfer of Discrete Fields between Arbitrarily Distributed Unstructured Finite Element Meshes." SIAM Journal on Scientific Computing 38.3 (2016):

C307-C333.)

MOONoLith

(http://moonolith.inf.usi.ch)

Transfer the data from a **source** space to a **target** space

Source and Target Mesh

 $\Omega_{\nu}, \Omega_{w} \subset \mathbb{R}^{d} \to \text{bounded domains approximated by } \Omega_{\nu}^{h} \text{ and } \Omega_{w}^{h}$ $\mathcal{T}^h_{\mathcal{V}}$ and $\mathcal{T}^h_{\mathcal{W}} \to \text{associated meshes}$, $V_h = V_h(\mathcal{T}^h_v)$ and $W_h = W_h(\mathcal{T}^h_w) \to \text{associated spaces}$ A Fictitious Domain Method for FSI Simulations Maria Nestola

For the definition of the projection operator, one needs to define a suitable discrete space of Lagrange multipliers M_h .

Set M_h as a discrete space based on the same space as the target space.

A Fictitious Domain Method for FSI Simulations

Description of the L^2 projection

For the definition of the projection operator, one needs to define a suitable discrete space of Lagrange multipliers M_h .

Set M_h as a discrete space based on the same space as the target mesh.

 $\mathbf{D} \Rightarrow \text{diagonal matrix}$

Description of the L^2 projection

1. Transfer data, \mathbf{v} , from E_m to data, \mathbf{w} , on E_s requires finding mesh intersections for quadrature.

- 2. Intersection-Detection: parallel tree-search algorithm. Outcome: element pairs (associated with processes).
- 3. Generate the quadrature points for integrating in the intersection region I^E .

Description of the L^2 projection

 Compute the local element-wise contributions for the operators B and D. Assemble one matrix T containing all the different projection matrices T_{m,s} for every pair of intersecting meshes:

$$\mathbf{T} = \begin{bmatrix} \mathbf{T}_{1,1} & \mathbf{T}_{1,2} & \dots & \mathbf{T}_{1,n} \\ \vdots & & \ddots & \vdots \\ \mathbf{T}_{n,1} & \mathbf{T}_{n,2} & \dots & \mathbf{T}_{n,n} \end{bmatrix}$$

Weak Scaling Tests

Institute of

Find $(\mathbf{u}_f, p_f; \eta_s, p_s; \boldsymbol{\lambda}) \subset (V_f \times Q_f \times V_s \times Q_s \times L)$ such that for every $(\mathbf{v}_f, q_f; \mathbf{v}_s, q_s; \boldsymbol{\mu}) \subset (V_f \times Q_f \times V_s \times Q_s \times L)$ $\int_{\Omega_f} \rho_f \frac{\partial \mathbf{u}_f}{\partial t} \cdot \mathbf{v}_f dV + \int_{\Omega_f} \rho_f [(\mathbf{u}_f \cdot \nabla)\mathbf{u}_f] \cdot \mathbf{v}_f dV + \int_{\Omega_f} \sigma(\mathbf{u}_f, p_f) : \nabla \mathbf{v}_f dV - \int_{\mathcal{I}} \boldsymbol{\lambda} \cdot \mathbf{u}_f dV = 0$ $\int_{\Omega_f} q_f \nabla \cdot \mathbf{u}_f dV = 0$ $\int_{\mathcal{I}} \boldsymbol{\mu} \cdot \left(\frac{\partial \eta_s}{\partial t} - \mathbf{u}_f\right) dV = 0$ $\int_{\widehat{\Omega}} \rho_s \frac{\partial^2 \widehat{\eta}_s}{\partial t^2} \cdot \widehat{\mathbf{v}}_s + \int_{\widehat{\Omega}} \widehat{\mathbf{P}}(\widehat{\mathbf{F}}) : \nabla \widehat{\mathbf{v}}_s dV + \int_{\mathcal{I}} \boldsymbol{\lambda} \cdot \mathbf{v}_s dV = 0$

 $\widehat{\Omega}_s$: solid domain, Ω_f : fluid domain $\mathcal{I} := \widehat{\Omega}_s \cap \Omega_f$.

"A fictitious domain/mortar element method for fluid-structure interaction." International Journal for Numerical Methods in Fluids 35.7 (2001): 743-761.

イロト イポト イヨト イヨト 一日

Università della Svizzera italiana

Computation Science ICS

Università della Computationa Svitzera Science Italiana ICS

Segregated Approach

- decoupled variables
- 2 iterations between subproblems
- 6 fixed point iteration

< 口 > < 同 >

∃ ► < ∃ ►</p>

Boundary Conditions

- 1 Inlet: Parabolic Profile $v_{fluid}(t) = 5y(y 1.61)[\sin(2\pi t) + 1.1]$
- 2 Outlet: Windkessel Model

$$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \\ \hline \\ & & \\ \end{array} \\ Q(t) = C \frac{dP(t)}{dt} + \frac{P(t)}{R} \quad P_{outlet}(t) = Q(t) \cdot R_c + P(t) \\ \hline \\ & \\ \end{array}$$

3 No slip boundary conditions on the top and on the bottom

Gil, Antonio J., et al. J. Computational Physics 229 (2010): 8613-8641.

▶ < 3 > 3

2D Benchmark

1 Neo-Hookean constitutive model: Beams with different stiffness 2 Newtonian fluid

Maria Nestola

A Fictitious Domain Method for FSI Simulations

della

2D Benchmark

Maria Nestola

A Fictitious Domain Method for FSI Simulations

æ

Towards 3D Simulations of Turbines

- 1 Linear constitutive model for the turbine blades
- 2 Newtonian fluid, Reynolds Number=2000
- 3 Non Conforming Meshes (Fluid and Solid Grid)

< 口 > < 同 >

Institute of

della Svizzera

italiana

1 Non Conforming Meshes

Towards 3D Simulations of Turbines

Università Institute of della Computational Svitzera Science italiana ICS

A Fictitious Domain Method for FSI Simulations

æ

Maria Nestola

A Fictitious Domain Method for FSI Simulations

・ロト ・四ト ・ヨト ・ヨト

2

Contact in linear elasticity:problem setting

- $\Omega = \Omega^m \cup \Omega^s \subset \mathbb{R}^3$ two $\Gamma_D = \Gamma_D^m \cup \Gamma_D^s$ Dir $\Gamma_N = \Gamma_N^m \cup \Gamma_N^s$ Neu $\Gamma_C = \Gamma_C^m \cup \Gamma_C^s$ pos
 - two bodies Dirichlet boundary Neumann boundary possible contact boundary

• Find displacement $\boldsymbol{u} = (\boldsymbol{u}^m, \boldsymbol{u}^s)$ s. t.

$$\begin{array}{rcl} -\sigma_{ij}(\boldsymbol{u})_{,j} &=& f_i & \mbox{in } \Omega, \\ \boldsymbol{u} &=& \boldsymbol{0} & \mbox{on } \Gamma_D, \\ \sigma_{ij}(\boldsymbol{u})n_j &=& \overline{t}_i & \mbox{on } \Gamma_N. \end{array}$$

- Φ: Γ^s_C → Γ^m_C: bijective "contact mapping", n^Φ: induced normal field, d: initial gap
 [u] := (u^s u^m ∘ Φ) · n^Φ: jump in n^Φ-direction
- Enforce contact conditions on Γ_C :

Contact in linear elasticity:problem setting

Università Institute of della Computational Svitzera Science Italiana ICS

Maria Nestola

A Fictitious Domain Method for FSI Simulations

2

・ロト ・四ト ・ヨト ・ヨト

Maria Nestola

A Fictitious Domain Method for FSI Simulations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

Maria Nestola

A Fictitious Domain Method for FSI Simulations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

Simulate the interaction between the fluid and the solid

2

・ロン ・回 と ・ ヨ と ・ ヨ と …

Simulate the interaction between the fluid and the solid

Solve contact problem

2

イロト イヨト イヨト イヨト

versità Institute of a Computationa zera Science ana ICS

Simulate the interaction between the fluid and the solid

Solve contact problem

Efficient and flexible way to treat the coupling on the volume on the interface by means of the L^2 – *projection* approach

The use of the L^2 – projection approach (MOONoLith library) allows for coupling arbitrary "in-house" solver codes based on different kind of spaces discretizations (Finite Element, Finite Volume, Finite differences), (i.e AV-Flow, (Artrog Center, Bern))

ersità Institute of Computationa tera Science na ICS

Simulate the interaction between the fluid and the solid

Solve contact problem

Efficient and flexible way to treat the coupling on the volume on the interface by means of the L^2 – *projection* approach

The use of the L^2 – projection approach (MOONoLith library) allows for coupling arbitrary "in-house" solver codes based on different kind of spaces discretizations (Finite Element, Finite Volume, Finite differences), (i.e AV-Flow, (Artrog Center, Bern))

Future Applications: flow in fractured networks, friction between rocks

Thank you for your attention

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >