FLEXSTOR

Solutions for flexible operation of storage hydropower plants in changing environment and market conditions - progress @ 15.09.2017

Dr Pedro Manso
Birmensdorf, 15th September 2017
INNOVATION BUSINESS CASE

Swiss hydropower role in domestic/regional energy mix

- CH hydropower is net provider of revenues annually, but on negative trend
- *Winter production* deficit, covered by importers
- *Hydro-storage* is paramount for intermittent Solar/Wind integration & grid balancing
INNOVATION BUSINESS CASE

- Develop approaches for cutting-edge issues that represent undefined contours (e.g. HPK, SedBal)
- Market “trends” with un-documented/unproven interest
- Threats with yet un-mastered risks

New social balance between water use and ecosystem safeguard
Proof-of-concept at KWO and later replication
Hydropower rehabilitation, extension or new projects face new issues linked with operation flexibility and sediment management, with direct impact on their intra-day or intra-annual competitive profile.

Intra-day operation
- Hydropoeaking (WP1)
- Turbine start/stops (WP6)

Intra-annual operation
- Limit the duration of preventive lake drawdown due to risk of impulse waves (WP2)
- Optimal storage management (WP3)
- Cascade sediment flushing (WP4)
- Turbine abrasion by fine sediment (WP5)
KWO SYSTEM

~ 600 hm³
~ 2.5 TWh/a
WP1 Hydropeaking mitigation
HYDROPEAKING (WP1) - MOTIVATION

Bottom-up operational questions:
- Demodulation basin design & operation criteria?
- Threshold values of critical criteria, where?
- Attenuation targets at tailrace outlet
- Complementary attenuation in rivers
- Avoid unstable flow conditions

Research questions:
- Which degree of granularity is required for modelling?
- What optimisation procedure is adequate?
- What is the adequate lead time for decision-making?
- What are the governing river morphology variables?
- Which are the best hydrometric data for operation & design?
HYDROPEAKING (WP1) - OUTPUT

- Winter/Spring future scenarios
- System Modelling & optimisation
- Scenario generator (portal)
- Hydraulic stability and N-1
- Influence of river morphology (field tests)

Scenario generator or hydropower systems:
- Reproduces potential variability of turbine discharge
- System defined as network:
 - Multiple inflows (water intakes)
 - One reservoir and one power plant
- Follows seasonal cycle
- Time step of 15 minutes
- Different turbine types selectable
- Web based tool for scenario generation
WP2 Natural Hazards
(Impulse waves)
IMPULSE WAVES – MOTIVATION

Bottom-up operational questions:
• What is the risk of impulse waves & dam overtopping in the KWO catchment?
• How can impulse waves be better predicted?
• What mitigation measures can be implemented?
• If preventive reservoir lowering is needed, how can the duration be limited?

Research questions:
• Do the laboratory test scale up to prototype field data?
• Improvement of mathematical description of physical events
• Improved design guidelines for impulse wave hazard assessment
IMPULSE WAVES – WORK DONE / ONGOING

- Impulse wave hazard assessment report for future Trift reservoir
- Laboratory tests (1:50) Preparation of field tests
- Field Test 2018 & Analysis
- Improved design guidelines
Hazard assessment tool for process chain:
"Landslide generation" → "Reservoir impact" → "Impulse wave generation and propagation"

- Small and large scale data on impulse wave generation
- Improved knowledge on upscaling
- Improved design guidelines for impulse wave hazard assessment

Test site at Grimsel Lake (Source: KWO)

IMPULSE WAVES – OUTPUT
WP3 Optimizing storage use
STORAGE MANAGEMENT – MOTIVATION

Bottom-up operational questions:
- Which past operation strategies can be re-used and when?
- In future climate, what is the energy potential of the system?
- What future hydropower operations are to be expected?
- How to adapt the system to better meet future market needs?

Research questions:
- What drove historical changes in hydropower production operations?
- How can past events inform possible future trends?
- How will climate change affect the hydropower production potential of the KWO system?
STORAGE MANAGEMENT– WORK DONE / ONGOING

Analysis using two complementary approaches backed up by market and climate data from partners (FoNEW and WSL).

• Learn from the past (“soft” approach):
 Mathematical and statistical models
 Visualization tools

• Rule-based production model (“hard” approach):
 Based on Routing System 3 (Hydrique Ltd.).
 Hydraulic model + Optiprod.
 Different scenarios (climate and markets).
STORAGE MANAGEMENT– OUTPUT

- Understanding of the system’s operation modes and what drives them.

 Hydrology vs. market.

 Seasonal vs. intra-daily operations.

- Detailed simulation of the system for different future scenarios.

 Comparison between different adaptations to the system.

- Long-term average changes in intra-daily flows (2005)

- Long-term change in average flows
WP4 Sediment routing through a cascade
SEDIMENT ROUTING (WP4) – MOTIVATION

Bottom-up operational questions:
- What is the current sediment balance of the catchment?
- How does this sediment balance evolve in time?
- How is the sediment settling affected by pump & turbine operations?
- Location of new inlets/outlets which favours lake turbulence?

Research questions:
- Parameters that characterize the level of turbulence in a reservoir?
- Minimum level of turbulence that inhibits sediment settling?
SEDIMENT ROUTING (WP4) – WORK DONE / ONGOING

- Multiannual Sediment balance
 - Sediment yield
 - Pump storage exchanges (PSE)
 - Sedimentation rate
 - % of fine sediments

- Sediment settling vs Level of turbulence
 - Parametrical study:
 - Geometry
 - Hydrodynamics
 - Sediment characteristics

- Case study
 - Layout optimization
 (angles, relative distances, ...)
 - Pump-storage operations
 - Flushing operations

- Guidelines of Sediment Management Plan

Compilation of the knowledge and insights achieved from this project to reduce the negative effects caused by sediments in reservoirs
SEDIMENT ROUTING (WP4) – OUTPUT

Sediment balance of a system of alpine reservoirs in cascade

Aerial view of the system formed by the reservoirs of Oberaar, Grimsel, and Räterichsboden

Sediment balance of the system of reservoirs in cascade
SEDIMENT ROUTING (WP4) – OUTPUT

Flow velocity vectors at the water surface for $Q = 90$ m3/s and $\alpha = 0^\circ$

Deposition of fine sediments for different orientations and discharges of the jet-like inflow
WP5 Turbine abrasion

Räterichsbodensee (KWO)
Stamm et al. (2016)

KW Fieschertal (gkw)
Felix (2017)
TURBINE ABRASION (WP5) – MOTIVATION

Bottom-up operational questions:

- During a reservoir drawdown, which part of the storage volume can be emptied via the turbines (rest via bottom outlet)?
- How does the suspended sediment concentration increase as the reservoir level drops and deposited sediment is re-mobilized?
- How high are the turbine abrasion and the efficiency reductions?
- How can the sediment concentration in the turbine water be increased in normal operation to reduce reservoir sedimentation?

Research questions:

- Which sediment concentration and particle sizes are acceptable in the turbine water?
- Is fine-sediment evacuation from reservoirs through the power waterway economically viable and efficient?
TURBINE ABRASION (WP5) – WORK DONE / ONGOING

2016 Monitoring of sediment load and turbine erosion during drawdown of Räterichsbodensee

2017 Investigation of lake sediment properties

Develop methodology (tools) for technical-economical analyses

Acceptable sediment concentrations and sizes in the turbine water

Recommend operational optimisation and further research

Analyses:
- Erosion depths (IEC 62364, HPP Fieschertal, Kaunertal)
 \[\Delta d(t) = C_i \cdot w(t) \cdot (PL_{\text{t}}(t) - PL_{\text{t,0}}) \]
 \[PL_{\text{t}}(t) = \sum_{i}^{n} \frac{SSC_i}{k_{\text{size},i}} \cdot k_{\text{shape},i} \cdot k_{\text{hardness},i} \]
- Turbine efficiency reductions
 \[\Delta \eta = \frac{1}{2} (\alpha / B) \]
- Sediment-induced costs
TURBINE ABRASION (WP5) – OUTPUT

• Full monitoring of a reservoir drawdown with moderate sediment remobilisation (data sets of sediment load and turbine erosion)

• Improved knowledge on lake sediment properties (mineralogical composition, particle sizes, shape and density) as an input for erosion prediction models

• Methodology (tools) to estimate acceptable sediment concentration and particle sizes (thresholds) for sediment transport through the power waterway to reduce reservoir sedimentation

• Recommendations on acceptable concentration and particle sizes for an alpine HPP (example Räterichsboden - Handeck 2)

• Example of a technical concept for sediment mobilisation, sorting and control of the supply rate
WP6 Turbine instabilities
TURBINE INSTABILITIES (WP6) – MOTIVATION

Bottom-up operational questions:
- Alternative start/stop paths to move from stoppage to full load without instabilities?
- How can turbine units be monitored to identify instabilities and inform mitigation?

Research questions:
- How can the instabilities be described?
- Is it feasible to measure runner stresses/strain?
- What type of equipment can be employed for on-board measurements?
- Can non-intrusive monitoring be employed?
TURBINE INSTABILITIES (WP6) – WORK DONE / ONGOING

Test preparation
CFD + Workshop

1st test
campaign

2nd test
campaign
June 2017

3rd test
campaign
Feb. 2018

Guidelines

Detailed presentation by Prof. Cécile Münch right afterwards!

©Decaix et al. 2016