



SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

# FLEXSTOR

Solutions for flexible operation of storage hydropower plants in changing environment and market conditions - progress @ 15.09.2017

Dr Pedro Manso

Birmensdorf, 15<sup>th</sup> September 2017

In cooperation with the CTI



Energy Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI









#### **ORGANIZATIONAL CHART**

|     | <b>FTH</b> zürich             |                      |                            |                            | Project N                               | /lanage                                  | ement                       |     |                        | STEERING GROU                                                                                                         | P                                              |                                                 |               |
|-----|-------------------------------|----------------------|----------------------------|----------------------------|-----------------------------------------|------------------------------------------|-----------------------------|-----|------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------|---------------|
|     | eawag<br>aquatic research 8 o | ECOLE PO<br>FÉDÉRALE | LYTECHNIQUE<br>DE LAUSANNE |                            | Prof. Anton<br>LC<br>Prof. Rober<br>VAV | Schleis:<br>H-EPFL<br>t Boes (<br>W-ETHZ | s (leader)<br>(deputy)<br>2 | -   |                        | Research Partne<br>Prof. Anton Schle<br>Prof. François Av<br>Prof. Robert Boe<br>Prof. Cécile Mün<br>Dr. Martin Schmi | r <b>s</b><br>eiss<br>vellan<br>s<br>ch        | LCH-EPF<br>LMH-EPF<br>VAW-ET<br>HES-SO<br>FAWAG | L<br>FL<br>HZ |
| Had |                               |                      | $\sim$                     |                            |                                         |                                          |                             |     |                        | Dr Manfred Stae                                                                                                       | hli                                            | WSL                                             |               |
|     |                               |                      |                            | Project coordination (WPO) |                                         |                                          |                             |     | Industrial Partner KWO |                                                                                                                       |                                                |                                                 |               |
|     | WP7 Outre<br>Activitie        | achs                 |                            |                            | Dr Peo<br>LC<br>Dr Lukas Sch<br>VAN     | lro Mar<br>H-EPFL<br>mocker<br>N-ETHZ    | nso<br>r (deputy)<br>2      |     |                        | Andres Fankhaus<br>Benno Schwegle<br>Dr Steffen Schwe<br>Maximilian Titzse                                            | ser (leader)<br>r (project n<br>eizer<br>chkau | nanager)                                        |               |
|     |                               |                      |                            |                            |                                         |                                          |                             |     |                        |                                                                                                                       |                                                |                                                 |               |
|     | WP1<br>Riverpeaking           | Impu                 | <br>WP2<br>Ise Waves       | V<br>Storage               | <br>VP3<br>/Demand                      | Cas                                      | <br>WP4<br>cade Flush       | ing | Tu                     | WP5<br>bine abrasion                                                                                                  | W<br>Turbine i                                 | P6<br>nstability                                |               |
|     | EAWAG<br>LCH-EPFL             | VA                   | W-ETHZ<br>WSL              | LCH                        | I-EPFL                                  |                                          | LCH-EPFL                    |     |                        | VAW-ETHZ                                                                                                              | HES<br>LMH                                     | -SO<br>-EPFL                                    |               |





#### **INNOVATION BUSINESS CASE**

#### Swiss hydropower role in domestic /regional energy mix

- CH hydropower is net provider of revenues annually, but on negative trend
- *Winter production* deficit, covered by importers
- Hydro-*storage* is paramount for intermittent Solar/Wind integration & grid balancing





### **INNOVATION BUSINESS CASE**

Develop approaches for cutting-edge issues that represent

- new environmental liabilities with undefined contours (e.g. HPK, SedBal)
- market "trends" with un-documented/ unproven interest
- threats with yet un-mastered risks

New social balance between water use and ecosystem safeguard Proof-of-concept at KWO and later replication







### **RELEVANCE OF FLEXSTOR**

Hydropower rehabilitation, extension or new projects face new issues linked with operation flexibility and sediment management, with direct impact on their intra-day or intra-annual competitive profile.





### **KWO SYSTEM**



~ 600 hm<sup>3</sup> ~ 2.5 TWh/ a











### WP1 Hydropeaking mitigation





### HYDROPEAKING (WP1) - MOTIVATION

#### Bottom-up operational questions:

- Demodulation basin design & operation criteria?
- Threshold values of critical criteria, where?
- Attenuation targets at tailrace outlet
- Complementary attenuation in rivers
- Avoid unstable flow conditions

### Research questions:

- Which degree of granularity is required for modelling?
- What optimisation procedure is adequate?
- What is the adequate lead time for decision-making?
- What are the governing river morphology variables?
- Which are the best hydrometric data for operation & design?









### HYDROPEAKING (WP1) - OUTPUT













### **IMPULSE WAVES – MOTIVATION**

#### Bottom-up operational questions:

- What is the risk of impulse waves & dam overtopping in the KWO catchment?
- How can impulse waves be better predicted?
- What mitigation measures can be implemented?
- If preventive reservoir lowering is needed, how can the duration be limited? Research questions:
- Do the laboratory test scale up to prototype field data?
- Improvement of mathematical description of physical events
- Improved design guidelines for impulse wave hazard assessment





### **IMPULSE WAVES – WORK DONE / ONGOING**







### **IMPULSE WAVES – OUTPUT**

- Hazard assessment tool for process chain: "Landslide generation" → "Reservoir impact" → "Impulse wave generation and propagation"
- Small and large scale data on impulse wave generation
- Improved knowledge on upscaling
- Improved design guidelines for impulse wave hazard assessment

| Mitteilungen                                         | 204                            |
|------------------------------------------------------|--------------------------------|
| Landslide generated im<br>Prediction of near field c | pulse waves:<br>haracteristics |
| Valentin Heller                                      |                                |
|                                                      |                                |





### WP3 Optimizing storage use







### **STORAGE MANAGEMENT – MOTIVATION**

### Bottom-up operational questions:

- Which past operation strategies can be re-used and when?
- In future climate, what is the energy potential of the system?
- What future hydropower operations are to be expected?
- How to adapt the system to better meet future market needs?

### Research questions:

- What drove historical changes in hydropower production operations?
- How can past events inform possible future trends?
- How will climate change affect the hydropower production potential of the KWO system?





### **STORAGE MANAGEMENT- WORK DONE / ONGOING**

Analysis using two complementary approaches backed up by market and climate data from partners (FoNEW and WSL).

• Learn from the past ("soft" approach): Mathematical and statistical models

Visualization tools

• Rule-based production model ("hard" approach):

Based on Routing System 3 (Hydrique Ltd.). Hydraulic model + Optiprod.

Different scenarios (climate and markets).











### WP4 Sediment routing through a cascade







### **SEDIMENT ROUTING (WP4) – MOTIVATION**

### Bottom-up operational questions:

- What is the current sediment balance of the catchment?
- How does this sediment balance evolve in time?
- How is the sediment settling affected by pump & turbine operations?
- Location of new inlets/outlets which favours lake turbulence?

#### Research questions:

- Parameters that characterize the level of turbulence in a reservoir?
- Minimum level of turbulence that inhibits sediment settling?





### SEDIMENT ROUTING (WP4) – WORK DONE / ONGOING







### **SEDIMENT ROUTING (WP4) – OUTPUT**

Sediment balance of a system of alpine reservoirs in cascade



Aerial view of the system formed by the reservoirs of Oberaar, Grimsel, and Räterrichsboden



Sediment balance of the system of reservoirs in cascade



### **SEDIMENT ROUTING (WP4) – OUTPUT**



Flow velocity vectors at the water surface for  $Q = 90 \text{ m}^3/\text{s}$  and  $\alpha = 0^\circ$ 

Deposition of fine sediments for different orientations and discharges of the jet-like inflow



### **WP5 Turbine abrasion**





### **TURBINE ABRASION (WP5) – MOTIVATION**

#### Bottom-up operational questions:



SCCE

- During a reservoir drawdown, which part of the storage volume can be emptied via the turbines (rest via bottom outlet)?
- How does the suspended sediment concentration increase as the reservoir level drops and deposited sediment is re-mobilized?
- How high are the turbine abrasion and the efficiency reductions?
- How can the sediment concentration in the turbine water be increased in normal operation to reduce reservoir sedimentation?

#### **Research questions:**

- Which sediment concentration and particle sizes are acceptable in the turbine water?
- Is fine-sediment evacuation from reservoirs through the power waterway economically viable and efficient?



### **TURBINE ABRASION (WP5) – WORK DONE / ONGOING**







Analyses:

- Erosion depths (IEC 62364, HPP Fieschertal, Kaunertal)  $\Delta d(t) = C_{i} w^{3} (PL_{b}(t) - PL_{b,0})$  $PL_{b}(t) = \frac{z_{0}}{z_{2}} \sum_{i} SSC_{i} k_{\text{size},i} \dots$  $\dots k_{\text{shape},i} k_{\text{hardness},i} \Delta t$ 

- Turbine efficiency reductions  $\Delta \eta = f(s / B)$
- Sediment-induced costs





### **TURBINE ABRASION (WP5) – OUTPUT**

- Full monitoring of a reservoir drawdown with moderate sediment remobilisation (data sets of sediment load and turbine erosion)
- Improved knowledge on lake sediment properties (mineralogical composition, particle sizes, shape and density) as an input for erosion prediction models
- Methodology (tools) to estimate acceptable sediment concentration and particle sizes (thresholds) for sediment transport through the power waterway to reduce reservoir sedimentation
- Recommendations on acceptable concentration and particle sizes for an alpine HPP (example Räterichsboden Handeck 2)
- Example of a technical concept for sediment mobilisation, sorting and control of the supply rate





### **WP6 Turbine instabilities**







### **TURBINE INSTABILITIES (WP6) – MOTIVATION**

### Bottom-up operational questions:

- Alternative start/stop paths to move from stoppage to full load without instabilities?
- o How can turbine units be monitored to identify instabilities and inform mitigation?

### **Research questions:**

- How can the instabilities be described?
- Is it feasible to measure runner stresses/strain?
- What type of equipment can be employed for on-board measurements?
- Can non-intrusive monitoring be employed?





### **TURBINE INSTABILITIES (WP6) – WORK DONE / ONGOING**









Detailed presentation by Prof. Cécile Münch right afterwards!

