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Hydraulic stimulation vs Hydraulic fracturing
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Treatment & Fluid Schedule Schematic

Propagation Shut-in Flowback / Clean-up
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Hydraulic Fracturing design

Well landing (for horizontals)

Completion type
— Perfs vs sleeve, perforation design

Fluids & fluid scheduling
— Fluid engineering (chemistry & rheology)

Proppant
— Proppant type & load

Necessary inputs

— In-situ stresses, pore-pressure
— Lithology, rock parameters (logs)
— Well geometry

— Chosen fluid schedule




Numerical HF growth Models

Simplified P3D models

(1980s)
T e, Planar 3D models
b '" (2000s) _
= I Multiple HFs models
= (2010s)

Length - ft

SH-Sh =100PSI

Are we drowning in complexity ? M.A. Biot 1962
Timoshenko medal speech

“We should not overlook simplicity combined with
depth of understanding not only for its cultural value,
but as a technological tool.”
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Experimental Validation: Stress jumps

Profile machined according
to elasticity solution !
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Numerical model verification

Radial HF Storage / Viscosity dominated benchmark (solution in Savitski & Detournay 2002)
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Nelements along the fracture

B. Lecampion, A. P. Bunger, and X. Zhang. Numerical methods for hydraulic fracture propagation: A review of recent
trends. Journal of Natural Gas Science and Engineering, 49:66—83, 2018.
E.Detournay, Mechanics of Hydraulic Fractures, Ann. Rev. Fluid Mech. 2016



What about hydraulic stimulation ?

= Design ?
— Little to no fluid engineering
(besides geochemical compatibility)
— Max. injection pressure, Max volume

— “listen to seismicity & decide”

= Limited return of experience

= Lack of verified & validated /physics-based models for
combined shear + opening fluid driven fracture
propagation

— Semi-analytical solutions for simplified geometries
— Controlled decimeter scales laboratory experiment



Model ingredients
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Mixed mode fluid-driven
fractures
— Mode I+l (+111 in 3D)

— Frictional contact
(with weakening / R&S
friction -> EQ/useismic
nucleation) + dilatancy &
fault permeability changes
— Multiple pre-existing
fractures

Boundary element for
mechanical deformation

(with acceleration techniques)
Finite Volume/Finite element
scheme for fluid flow

Fully coupled Hydro-mechanical
solvers



Solutions & verifications

Pure shear frictional fluid
driven fracture growth solution

= Plane-strain geometry

— Garagash & Germanovitch
(JGR 2012):
with linear slip weakening /
constant permeability

— Viesca (2018):
constant friction (solely aseismic
growth) / constant perm.

— Zhang et al. (GJI 2005):
constant friction + uniform

pressure = Aseismic growth scales as
— Azad & Garagash (JGR 2016): N
combined shear + opening { o Viat
but can be way ahead the
= Axisymmetric diffusion front for critically
— Viesca (2018): constant friction stressed configuration

(solely aseismic growth)



Example - friction neutral solution

Shear crack driven by constant pressure |nject|on
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Examples — nucleation & arrest

Medium overpressure
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Conclusions

= Design for hydraulic stimulation is still immature

= The situation is better for hydraulic fracturing
(at least for planar fractures)

= Numerical model verification for fracture propagation
IS a must & it's hard

— A majority of HF numerical models do not even pass simple
comparison with known propagation solutions

— Semi-analytical propagation solutions are a huge help for the
development of robust solver

— Laboratory experiments of shear mode fluid-driven cracks (at
sufficient scale) are also required
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Coupled processes in fracture propagation in geo-
materials: from hydraulic fractures to earthquakes
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The usual ‘workflow’

Reservoir Characterization

Log interpretation

Rock properties Well tests

Stresses, Pore pressure

Calibration /
Lessons learned

Fracture Modelling
Injection schedule

Real-time monitoring
On the job design cha‘ﬁges_

design

Perforation / 0 .
Selection & design g - ]
I 1- Dat_a Fr_ac : — \' Materials selection
//33, 12— Main injection e— £\

Fluids & proppant
Complexity depends on criticality of the job: from hours to months of preparation



PyFrac — an efficient simulator for hydraulic fractures
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0.051 - =—— numerical

= Implicit Level Set scheme TEH
— Planar 3D mode | hydraulic 0.00 -
fracture propagation
— Homogeneous elasticity
— Heterogeneous in-situ stress

— Heterogeneous fracture
energy

— Isotropy & Transverse Isotropy

— Newtonian fluid ~0.10 -0.05 0.00 005  0.10
« Laminar or turbulent meters
conditions
_ Carter’s leak-off in the matrix  * Boundary elements + Finite volume +
Fast marching Method + HF tip
asymptotics
Open-source
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— Reproduce very well all
available Hydraulic Fracture
solutions & experiments

confining stress (MPa)



