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Why do we need in-situ experiments?

Main research question: How can we create an efficient heat exchanger while keeping

the risk of induced earthquakes at acceptable levels? .
Difficulty to control and access
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Grimsel Test Site and the In-situ Stimulation Experiment
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Maximum Observed Magntiude

Preparation: Assessment of seismic hazard

. Maximum expected
magnitude = maximum
observed magnitude

» Hazard analysis useful

» New data in scale with few
previous experiments
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Preparation: Geological Model
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S3.1 Highly fractured $3.2 unclassified

ductile shear zone

Combination of Tunnel-mapping, core-logging,
borehole-logging

Large scale interpolations validated by: tunnel-
tunnel seismic tomography and hydraulic cross-
hole testing

Basis for numerical modelling, discrete fracture
network, ...

Exemplary detailed schematic maps of both shear zone type:
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Preparation: stress measurements

Unperturbed stress field
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Stimulation concept

6 Hydroshearing (HS) experiments (Feb. 2017), 6 Hydrofracturing (HF) experiments (May 2017)
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Stimulation concept

6 Hydroshearing (HS, Feb. 2017), 6 Hydrofracturing (HF) experiments (May 2017)
Standardized injection protocol (one each for HS and HF)

Injected volume ~ 1 m3 in each experiment
Variability in observations due to geology, not injection strategy

Cycle 1: Cycle 2: Cycle 3: Cycle 4:
initial injectivity, jacking pressure Stimulation final injectivity and i .
breakdown of rock (here: 7 Mpa) jacking pressure Experiment 2:

HS4 9. Feb. 2017
(here: 6.3 MPa)
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Stimulation experiments: Injection and observation setup

/ 6 Hydroshearing intervals
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Example hydroshearing experiment: pressure propagation

50 . - - _ Injection
a) ! I g% ] ! ] gg I borehole INJ1
— 40 | 5 :E 3 & 7 »
£ e e 23 e &3 38
£ 30 @28 oL 53 1 B
= g5 85 g3 -
[} | A [ 35 4 @ e
2 20 &8 2s
© Q3
10+ R =3
:
o or 4
-10 1 1 1 1 s‘
0 1 2 3 4 5 6 7 2
T T T Injection pressure 5
b) ——— PRP1 Interval 2 S =
_ S PRP1 Interval 3 N
T PRP2 Interval 2 3 g
m -
S6h E g8
= - i S5
5 4+ Contains A ‘ri; § 57?.
2 only S3.2 Q :I s5
@ 33 ks
a,l i = <
3 "’I ]
x
0 J % ~t Lt %i 2
0 1 2 5 6 7 §
. . . S
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» Strongly heterogeneous, channelized flow
» Flow paths changing during experiment



Pressure monitoring from seismic velocity observations
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show strong correlation between 30

seismic velocity and pore pressure

»  Active seismic monitoring as new
technology for pressure monitoring
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Pressure monitoring from seismic velocity observations

3 ) 1 @ injection interval
. R ted . . duri Aviv [%]) @ Seismic source
epeated seismic surveys during ¥ seismic receiver
hydraulic stimulations * strain sensor
show decrease of velocity 40~ - £ PR —
seismic event
. Laboratory and field measurements L
show strong correlation between o 30
o
seismic velocity and pore pressure -
s
§20~
0.5 1 &
. 0.
Lab-derived ‘Id measurements N
(2]
& 03/ @< 30 o 120
=3 o 60 100
o - 70 90 )
4027 Easting +667400 Northing +158800
0.1

%06 0.4 02 0 s
Doetsch et al., 2018, GRL Av/v [%]



Seismic monitoring

= 26 AE sensoren
(8 in boreholes)

= 5 accelerometers

= 20’824 detected microseismic
events

= 2’605 manually picked and
located events

= Location accuracy: 0.5 m

» Magnitude range
Mr —-4.0 to -2.0




Seismicity of all experiments

FMD, HF experiments FMD, HS experiments
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= Large variability within small rock volume
» Local (geological) conditions more important than injection protocol?



Hydraulic characterization

Packer boards Flow board
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Summary Grimsel ISC

= Successful hydraulic stimulation
= Final transmissivity similar for all HS experiments
* Final transmissivity for HF smaller than for HS experiments
= Large variability in seismic response; difference between S1 and S3 injections
= Seismic hazard analysis correctly predicted maximum magnitude
= Pressure propagation: linear, non-linear and channelized flow observed during stimulations
= Interplay between hydraulic fracturing and hydraulic shearing observed
= New technologies successfully tested
= Active seismic observations for pressure monitoring

= DNA nano tracers, potential to record temperature along flow path
= Fiber optic technology for temperature, strain and seismic signals

= Data publicly available for benchmarking numerical codes, testing new ideas, ...
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Bedretto — yet another rock lab?

Felslabor Mont Terr| FMT

Felslabor Grlmsel FLG




Situation Bedretto-Stollen




Scope of BedrettoUnderground Lab

reproducibility

known conditions

controlled conditions
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Deep
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Prerequisite for an effective, sustainable geothermal reservoir

hierarchy

fracture network

needs to satisfy: b

circulatio

flow rate surface area



Increasina the combplexitv of network hierarchy

hierarchy

flowrate surface area
POM PSS PFSSL MMS
Fig. 1. Schematic of four conceptual models for the mechanism of stimulation in
EGS. The black dot represents the wellbore. New fractures are represented with red McClure and Horne

\ 4 2014, IJRMMS
lines, and preexisting fractures are represented with blue lines. The mechanisms ( )

are: pure opening mode (POM), pure shear stimulation (PSS), primary fracturing
with shear stimulation leakoff (PFSSL), and mixed-mechanism stimulation (MMS). |



Sneak Preview




