Swiss Centre of Competence for Deep Geothermal Energy for power and heat production

Reservoir engineering for a heat exchanger in Haute-Sorne (or elsewhere)

SCCER-SOE Annual Conference 2018, Lucern University of Applied Sciences and Arts (HSLU) 14.09.2018, Horw

Dr. Peter Meier & Dr. Dieter Ollinger Geo-Energie Suisse AG

Stimulation of an open-hole vertical well

Stimulation of an open-hole deviated well

Multi-stage stimulation of isolated segments

Monte Carlo simulations to estimate the changes of successful flow rates

O. Masset, S. Loew / Engineering Geology 164 (2013) 50-66

Monte Carlo flow rate simulations for the multi-stage EGS stimulation concept of the Haute-Sorne pilot project => Probability of success increases with the number of stages

GEO ENE SUISSE

Influence of depth and rock type assuming mean stage failure of 40%

Overall probability assuming a depth of 4500 m, mean stage failure of 40% and 2/3 granite and 1/3 gneiss

Steps of Monte Carlo modeling

- 1) Statistical data for transmissivity (T) including spatial correlation along tunnel (borehole) axis
- 2) Generation of multiple T value-sets
- 3) Depth correction of T values
- 4) Multiplication of T values with stimulation factors
- 5) Correction for stage failure probability
- 6) Run over 2000 simulations for flow calculation with reservoir model

Step 1 Statistical data for transmissivity (T) including spatial correlation along tunnel (borehole) axis

Geo-statistical data for transmissivity (T) including spatial correlation along tunnel axis

O. Masset, S. Loew / Engineering Geology 164 (2013) 50-66

Fig. 14. Histogram distribution of all 50-m hydraulic conductivities (lower and upper bound values).

-variograms of 50-m hydraulic conductivities along the two tunnel tubes for higher (HB) and lower (LB) bound value

Step 2: Generation of multiple T value sets for 30 stages along borehole axis

Code SGeMS (Remy et al., 2011)

3) Depth correction of T values

Relationship of Stober & Bucher (2007), influence zone deep Gotthard tunnels, Basel borehole data and extrapolation to depth

4) Multiplication of T values with stimulation factors

Modified from Evans (ETH Zürich ZLG short course in deep geothermics, 2013)

5) Correction for stage failure probability

Step 6) Run over 2000 simulations for flow calculation with reservoir model

FE-Code TRANSIN UPC Barcelona

