CO₂ sequestration:

Progress in the Elegancy-ACT project

Alba Zappone (ETHZ)

with contributions of : *Melchior Grab Antonio Rinaldi Anozie Ebigbo and the ELEGANCY Team*

Horw, 14 Sept. 2018

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

In cooperation with the CTI

Energy funding programme Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

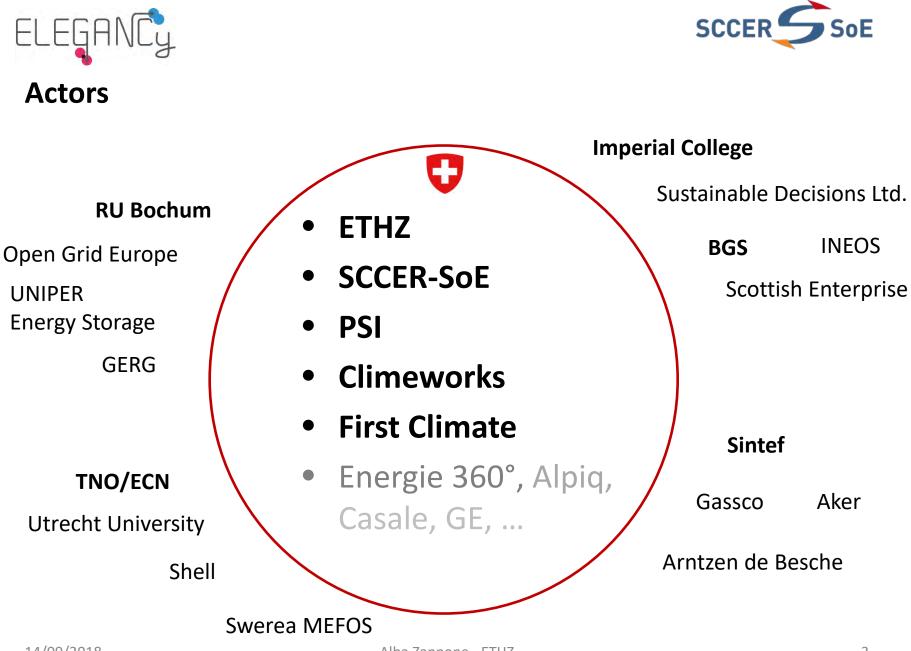
ACT ELEGANCY, Project No (UK), Gassco, Equinor and

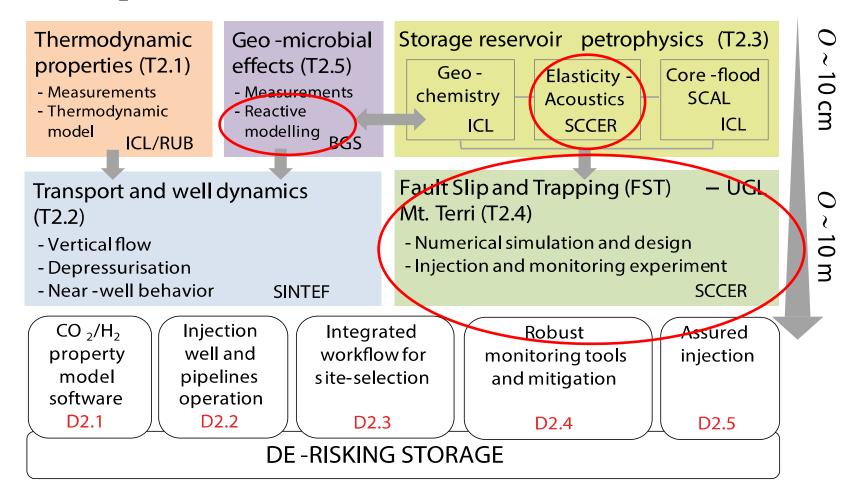
Efficient generation of renewable H₂ from biomass, while harvesting geothermal

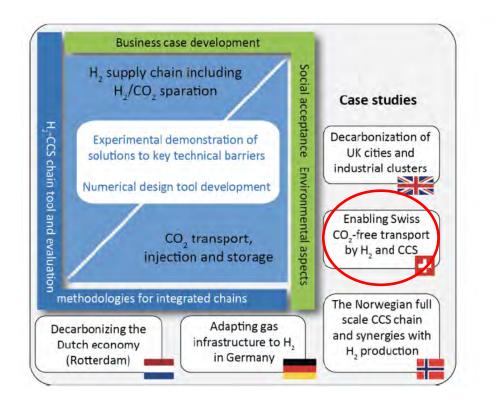
heat and enabling negative CO₂ emissions

September 2017-August 2020

271498, has received funding from **DETEC (CH)**, BMWi (DE), RVO (NL), Gassnova (NO), BEIS Total, and is cofunded by the *European Commission under* the Horizon 2020 programme, ACT Grant Agreement No 691712.


Enabling a Low-Carbon Economy via Hydrogen and CCS **ELEGANCY**


Overview


WP2: CO₂ transport, injection and storage

WP5 National case studies on the implementation of H₂-CCS chain

[...] continued development of the **Swiss Geothermal/CCS Roadmap**, and SCCER will be integrating the findings into the strategies for the future Swiss energy system, in particular with regards to aspects of CO_2 storage sites [...]

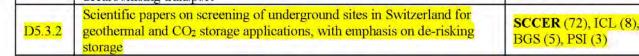


Table 1 WP5 deliverables with person month (PM) efforts and due month

D5.3.1	Scientific papers on H ₂ production from biogas and bio-mass in Switzerland: technical evaluation, potential estimation and comparison with H ₂ production from electrolysis, including focus on infrastructure for decarbonising transport	ETH (23), PSI (9), E360 (1)	M24
D5.3.2	Scientific papers on screening of underground sites in Switzerland for geothermal and CO ₂ storage applications, with emphasis on de-risking storage	SCCER (72), ICL (8), BGS (5), PSI (3)	M27
<u>D5,3.3</u>	Scientific papers on scenario modelling for energy production via coupled CO ₂ storage and geothermal in Switzerland, including quantification of Swiss H ₂ -CCS chain performance	SCCER (36), PSI (24)	M33
D5.3.4	Scientific papers on improved DACCS for accelerating CO ₂ storage and geothermal applications, including life cycle analysis of DACCS compared to biomass-based H ₂ -CCS	Climeworks (60), PSI (2)	M36
D5.3.5	Scientific papers on the potential and role of clean H ₂ for road transportation and DACCS as enabler of geothermal and CO ₂ storage applications in the Swiss society	SCCER (36), PSI (12)	<u>M36</u>

Societal perspective: Data of a first survey on social acceptance of CCS and geothermal energy have been collected by an online survey among the general population in the German and French speaking parts of Switzerland (N = 808). Coordination with the RUB team is on-going

Screening of underground sites for geothermal energy and CO2 storage:

 Definition of criteria for CCS site selection across the Swiss Plateau
 Providing quantitative data (subsurface geological model and morphotectonic analysis) concerning a possible CCS site.

Risk management (year 2): series of workshops in coord. with BGS , 1st on Sept 24 Aim: define the scientific objectives we want to test in the injection site (e.g. injectivity, leakage monitoring strategies, remediation strategies, reservoir modeling, etc.)

Table 1 WP2 deliverables with person month (PM) efforts and due month

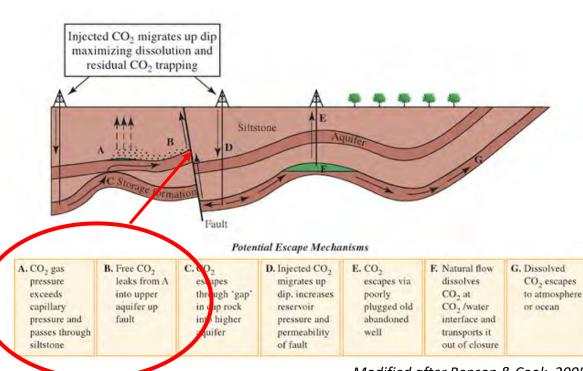

ID	Title	Partners (PM)	Due
D2.3.1	Core-analysis report/paper on reservoir rocks from promising storage sites in Switzerland, including measures of multiphase and elastic properties and incorporating the effect of sub-core scale heterogeneity	ICL (33), SCCER (24)	M33
D2.3.2	Report/paper on dissolution and capillary trapping for scenarios involving ex- solution of CO ₂ in response to depressurization ("dynamic" core-floods to design Mt. Terri exp.)	ICL (34)	M30
D2.3.3	Report/paper on the geochemical response of the rocks to the presence of pure and dissolved CO ₂ , including measurements of reservoir-mineral wettability and dissolution rates in CO ₂ -saturated brines and sorption on clays	ICL (34)	M33
D2.4.1	Preliminary report on characterization, design, and execution of the Mont Terri exp.	SCCER (48)	M24
D2.4.2	Report/paper on core characterization from related rock mechanics experiment and modelling of Mont Terri experiment	SCCER (24)	M30
D2.4.3	Report/paper on risk assessment and de-risking strategies for future scenarios and knowledge transfer to WP5	SCCER (24)	M30

Table 2 WP2 milestones

ID	Title	Responsible	Due
M2.4.1	Mont Terri experiment design and characterization completed	SCCER	M18
M2.4.2	Mont Terri experiment executed	SCCER	M24
M2.5.1 Construction and operation of suitable geomicrobial set up		BGS	M12
M2.5.2	Completion of geomicrobial experiments	BGS	M30
M2.5.3	Extension of THC simulator capability to support microbiological effects	SCCER	M27

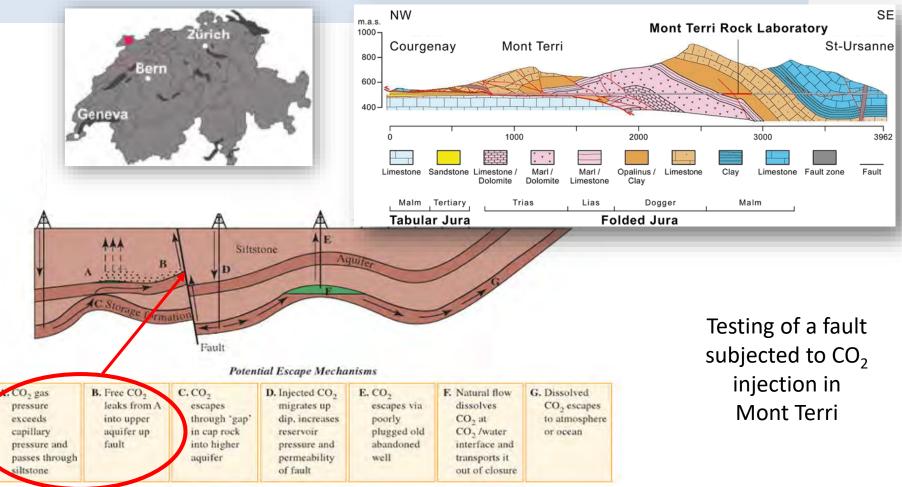
Scientific objects

Modified after Benson & Cook, 2005

Understanding how exposure to CO₂rich brine affects **sealing integrity** of caprock (hosting a fault system): **permeability changes** - **induced seismicity**

SoE

Direct observations of fluid migration along a fault and of its interaction with the surrounding environment


Validate instrumentation and methods for monitoring and imaging fluid transport

Validate Thermo-Hydro-Mechanical-Chemical **(THCM) simulations**

ELEGANCy

Caprock/fault sealing integrity: Mont Terri CS-D experiment

Modified after Benson, S.M. and Cook, P., 2005. Underground geological storage. In: B. Metz, O. Davidson, H. de Coninck, M. Loos & L. Meyer (Eds), IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge: 195-276.

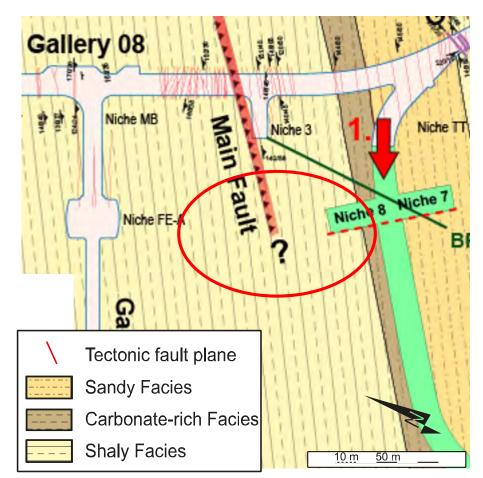
Caprock/fault sealing integrity: Mont Terri CS-D experiment

Concept

- Inject CO₂ saturated brine and tracers in Mont Terri main fault:
 - Continuous/long term (8-10 month)
 - Pulse/ pressure increase steps (at beginning and at end of the injection phase)

Scale: 1-10 m³ brine -> rock volume

- Monitor injection effects:
 - Strain = Extensometer(s)
 - Vp, (Vs), fiber optics and traditional methods
 - Microseismic.....
- Pre and post mechanical & geophysical characterization at lab scale
- Pre and post numerical simulations

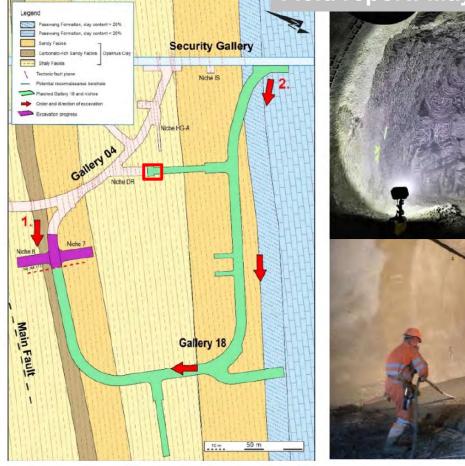


ELEGANCY

Caprock/fault sealing integrity: Mont Terri experiment

Technical layout one year ago

- Injection borehole
 - 40-50 m long
 - 120 mm diameter
 - 2 separated injection sections
- Parallel borehole for extensometer
- 3-5 Monitoring wells
- Sampling holes



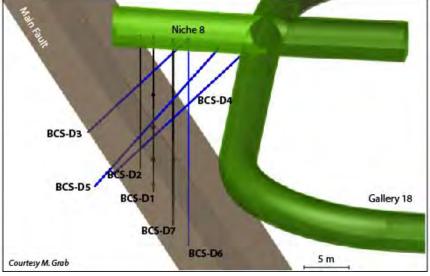
ELEGANCy

Caprock/fault sealing integrity: Mont Terri CS-D experiment

Field report: May 7th – May 20th 2018 (Phase 23)

Mont Terri Project

Courtesy Christophe Nussbaum, Swisstopo


Caprock/fault sealing integrity: Mont Terri CS-D experiment

Technical layout

ELEGANCy

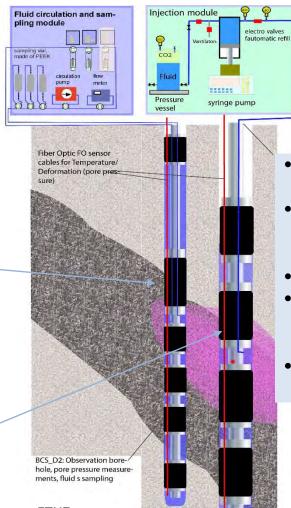
Borehole- ID	Main Purpose	Inclina- tion (°)	Diameter (mm)	Depth (m)
BCS-D1	Injection	0	101	23
BCS-D2	Fluid Monitoring	0	101	20.3
BCS-D3	Active Geop. Mon	42.5	131	27.3
BCS-D4	Active Geop. Mon.	42.5	131	35.2
BCS-D5	Micro-earthq. mon	36.6	146	35.2
BCS-D6	Micro-earthq. mon.	0	131	35
BCS-D7	Slip monitoring	0	101	27.8

Partners with CS-D

Mont Terri Project

swisstopo

Caprock/fault sealing integrity: Mont Terri CS-D experiment


Technical layout

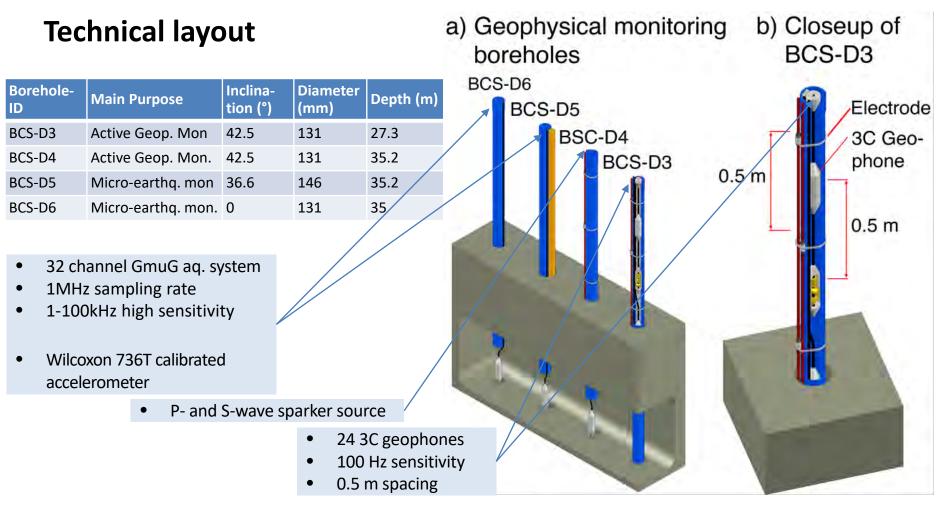
ELEGANCy

Borehole- ID	Main Purpose	Inclina- tion (°)	Diameter (mm)	Depth (m)
BCS-D1	Injection	0	101	23
BCS-D2	Fluid Monitoring	0	101	20.3

- PT1000 temperature sensor;
- 4 intervals equipped with 3 lines (2 for fluid circulation using sampling module, 1 for pressure measurement) in stainless steel 4

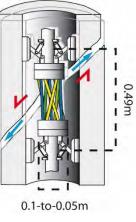
- 4 fold packer system;
- PT1000 temperature sensor;
- Three lines in interval 1 and 4 in stainless steel

- Packer system control unit
- DTS FO sensor cable integrated within packer system
- 2 injection intervals
- 2 guard intervals above and below the injection intervals
- Packer length:
 3x0,5m, 1x1m;


14/09/2018

ELEGANCy

Caprock/fault sealing integrity: Mont Terri CS-D experiment

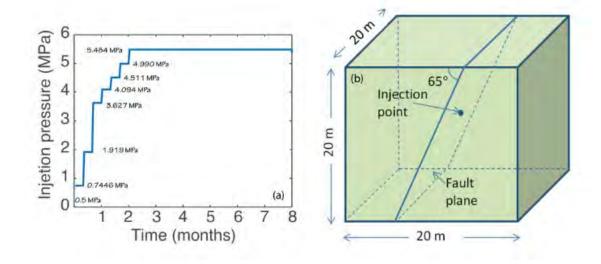


Caprock/fault sealing integrity: Mont Terri CS-D experiment

Technical layout

Borehole coupled pore pressure and strain monitoring: 3-components Displacement sensors (2 SIMFIP sensors)

- Measurement range: Uaxial = 0,7mm Uradial = 3,5mm
- Resolution of 3µm
- 500 Hz sampling frequency



ELEGANCy Caprock/fault sealing integrity: Mont Terri CS-D experiment

Preliminary modelling TOUGH-FLAC

Sensitivity analysis to assess the max reach of the pressure front and injection brine

- Assumptions:
 - Pure brine, no CO₂
 - Fixed permeability
 - No stress dependency
- injection strategy similar to the previous FSexperiment

ELEGANCy

Caprock/fault sealing integrity: Mont Terri CS-D experiment

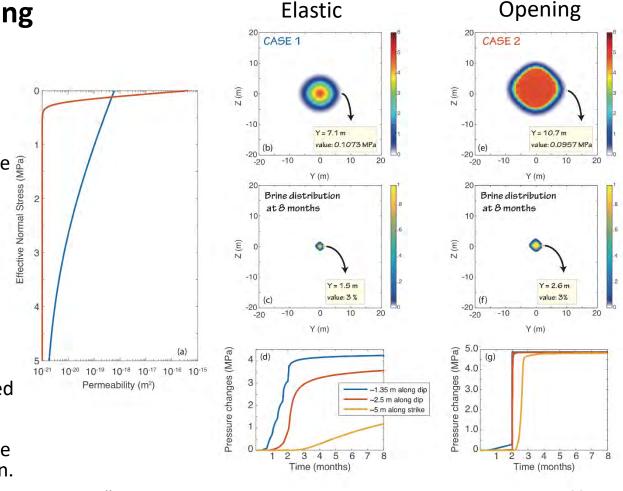
Preliminary modelling Pressure at 8 months Pressure at 8 months 化る血 **TOUGH-FLAC** fixed permeability fixed permeability 10 κ=5·10-20 m2 (b=0.5 μm) 10 10⁻¹⁹ m² (b=1 um) $\kappa = 10^{-21} \text{ m}^2 (b=0.1 \text{ um})$ Z (m) Z (m) (m) Z By varying the permeability in the range 10^{-21} to 10^{-19} -10 -10 -10 Y= 3.3 m m²: Y = 8.1 n(a) value: 0.0986 MPa value: 0.0974 MPa (d) (g) -20 -20 -20 -10 10 20 -10 10 0 -20 -10 0 10 20 -20 0 20 Y (m) Y (m) Y (m) 20 20 20 Brine distribution Brine distribution Brine distribution pressure can propagate, ۰ at 8 months 8 months at 8 months 10 10 10 in all simulated cases (m) Z Z (m) Z (m) -10 -10 -10 Y=1.2 m with value well above in Y=0.6 m Y=2.5 m value: 3 % value: 29% value: 3 % (b) (h) (e) short time -20 -20 -20 -10 0 10 20 -10 0 10 20 -10 0 10 20 -20 -20 -20 Y (m) Y (m) Y (m) echanges (MPa) 9.0 2.5 3.0 Pressure changes (MPa) 0 2.0 1.1 2.2 2.5 0.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5 0 Pressure changes (MPa) (c) (f) (i) the injected brine is ۰ 2.0 ~1.35 m along dip reaching above 2 m -2.5 m along dip -5 m along strike distance only in the 1.0 Pressure 0.2 case with higher permeability 2 3 4 5 6 7 2 3 4 5 6 8 2 3 4 5 6 7 1 1 Time (months) Time (months) Time (months)

14/09/2018

Alba Zappone - ETHZ

Caprock/fault sealing integrity: Mont Terri CS-D experiment

Preliminary modelling TOUGH-FLAC


Two possible cases:

ELEGANO

- a constant increase of permeability with
- decreasing normal effective (real) stress (elastic behaviour) fracture jack opens after reaching small value in effective normal stress (opening). ۲

Conclusion:

In case 2 no pressure changes should be recorded in the first months, and after jacking the pressure should reach a similar value in the entire opened region.

14/09/2018

Alba Zappone - ETHZ

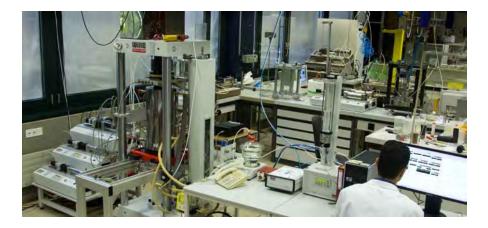
ELEGANCy Caprock/fault sealing integrity: Mont Terri CS-D experiment

Operative Phase

- August 28: the drilling company installed and started with the borehole
- Fault encountered at 28.4 m depth. C.a 3 m thikness

ELEGANCy Caprock/fault sealing integrity: Mont Terri experiment

Laboratories



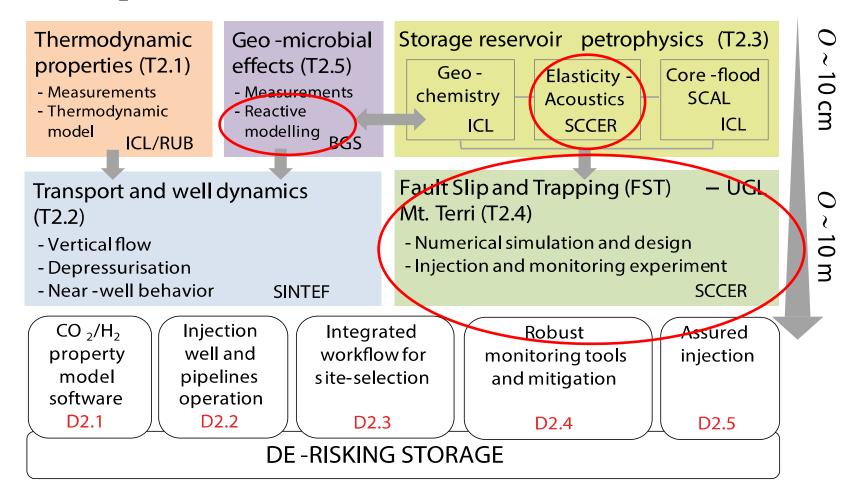
Rock Deformation Lab (Dr. C. Madonna)

Lab of Soil Mechanics (D. Alessio Ferrari)

Caprock/fault sealing integrity: Mont Terri experiment

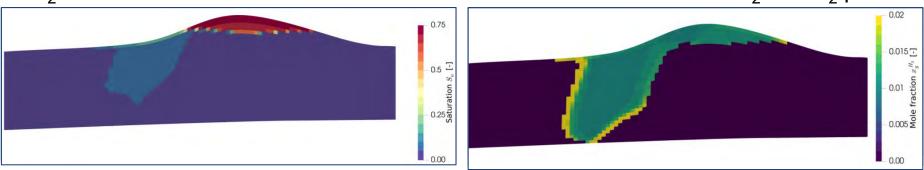
Timeline

ELEGANCY: 1.9.2017-31.8.2020


Mont Terri Phase 24-25

#	Task	Assigned	Start	End	Dur	20	2017 2018			20	19			202	20				
		To		100		Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	04
	Project Fault sealing integrity		1/9/17	30/7/20	759	-		_			_	_	_	_				1	
1	Experimental design and feasibility study 🖲		1/9/17	31/5/18	194		_	_	-										
2	Experimental installation		1/5/18	31/10/18	131	1		_	-			_			_		_	_	
3	Injection and monitoring		1/11/18	30/6/19	172				-		F	_							
4	Post experiment volume characterization 🖲		1/9/19	30/7/20	238		_	_		-				P	_	_	_		

WP2: CO₂ transport, injection and storage



Geothermal Energy and Geofluids group Anwar Al Assadi's MSc, collaborators Uni Stuttgart.

Simulation of injection of impure CO_2 (1% H_2) in a saline aquifer for 1 year


CO₂ saturation

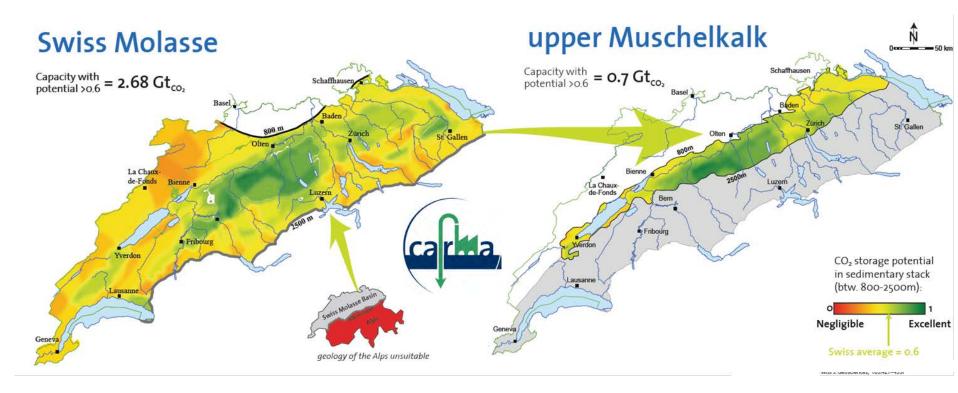
Mole fraction of H₂ in CO₂ phase

time = 40 years (post injection)

- Due to differences in the properties of CO_2 and H_2 , there is an accumulation of H_2 at the fringe of the plume.
- Higher (double) hydrogenotrophic microbial growth rates are to be expected at the fringe than in the middle of the plume. => future work

Mole fraction of H₂ in water phase

Domain dimensions; ca. 3km x 400m



Progress in the Elegancy-ACT project

Thank you for your attention

CO₂ storage site selection

Chevalier G., Diamond L.W., Leu W. (2010) Potential for deep geological sequestration of CO₂ in Switzerland: a first appraisal, Swiss J. Geosciences, 103:427–455

14/09/2018

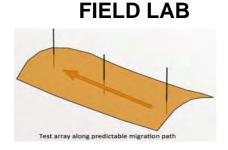
ELEGANCY

Alba Zappone - ETHZ

ELEGANCY

CO₂ storage site selection

Engendantion Dearment for Contrast of Contrast of Con		Grundlage für Baugesuch CO ₂ -Pilot Anlage
Roadmap for a Carbon Dioxide Capture and Storage pilot project in Switzerland		Grundlagen zur Einreichung eines bewilligungsfähigen Baugesuchs für eine CO ₂ - Injektions Pilotanlage
	carta	erarbeitet im Auftrag des Bundesamtes für Energie Autor: Dr. Markus O. Häring Häring Geo-Project Oktober 2015
2013		2015 Dist_CO2_injection_Pilor_201015.docx Sets 1 von 49 28.10.15



CO₂ storage site selection

Feasible Scenarios for Injection Test

STORAGE

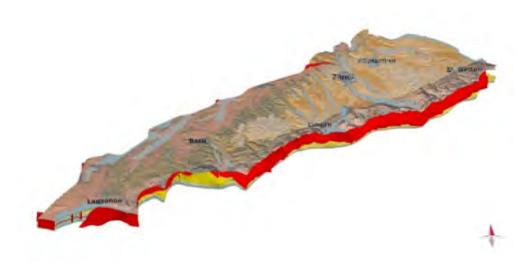
ELEGANCY

- + Could be final storage site (small)
- + Will demonstrate CCS feasibility in CH
- Long and costly exploration phase

- + Results on migration process in short time
- No final storage site, up-scaling problems, public acceptance

ELEGANCY

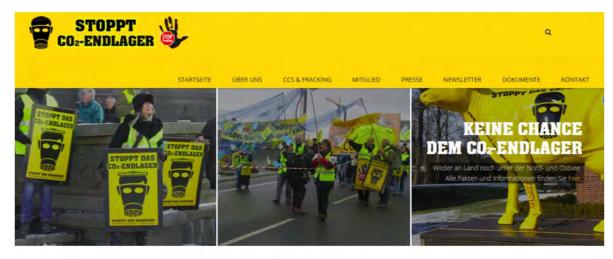
CO₂ storage site selection



FACULTÉ DES SCIENCES

GeoMol – Geologisches 3D Modell[®] des Schweizerischen Mittellandes

Wie sieht es im Innern des Hügelzugs aus, auf dem Schloss Aarburg steht? Wo in der Schweiz gibt es Gräben, welche bis 3000 m unter die Erdoberfläche reichen? Wir können es Euch zeigen! Mit dem brandneuen geologischen 3D-Modell der Schweiz sind solche Einblicke in den Untergrund ab sofort möglich.


Reservoir Geology and Sedimentary Basin Analysis (Prof Andrea Moscariello)

ELEGANCY

CO₂ storage site selection

(Prof Michael Stauffacher)

Aktuelles

Source: http://keinco2endlager.de/

CCS geological storage pilot

The opportunity of Elegancy

Thank you for your attention

\equiv

Neue Bürcher Beitung

Das neue Immobilienportal für Anspruchsvolle

Kohlendioxid-Rückgewinnung

Zürcher Startup-Unternehmen mit Weltpremiere: CO₂ wird aus der Luft gefiltert

von Christian Speicher 31.5.2017, 12:00 Uhr

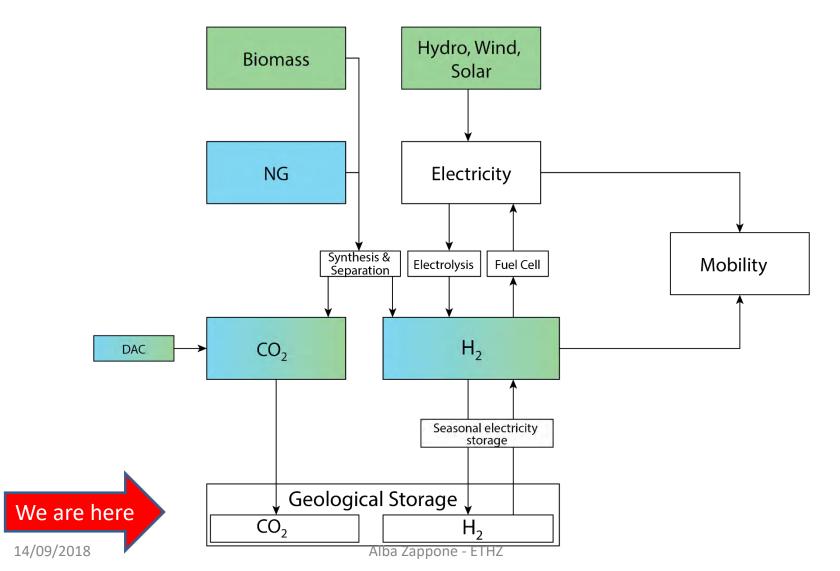
In Hinwil ist die weltweit erste Anlage in Betrieb genommen worden, die das Treibhausgas CO₂ aus der Luft filtert. Die Technologie könnte zukünftig dazu beitragen, unsere «Klimaschulden» zu begleichen.

f 🍠 🌾 in 🖬 👼

Auf dem Dach der Kehrichtverbrennungsanlage in Hinwil steht der CO₂-Filter, der die Gärtnerei mit dem wachstumsfördernden Treibhausgas versorgt. (Bild: Climeworks / Julia Dunlop)

Climeworks makes history with world-first commercial CO2 capture plant

Today Climeworks is unveiling its proudest achievment to date: the world's first commercially operational plant capturing CO2 from the atmosphere.


We'll be bringing live updates from the launch event near Zürich, Switzerland. So check out our Twitter and Facebook feeds and sign up to our newsletter to get the latest updates from our ongoing mission to capture one per cent of global carbon emissions by 2025.

Ш

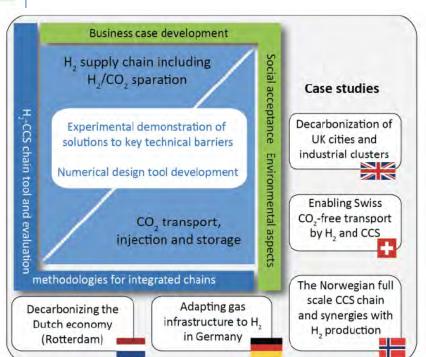
Elegancy - Vision

Proposal full title:

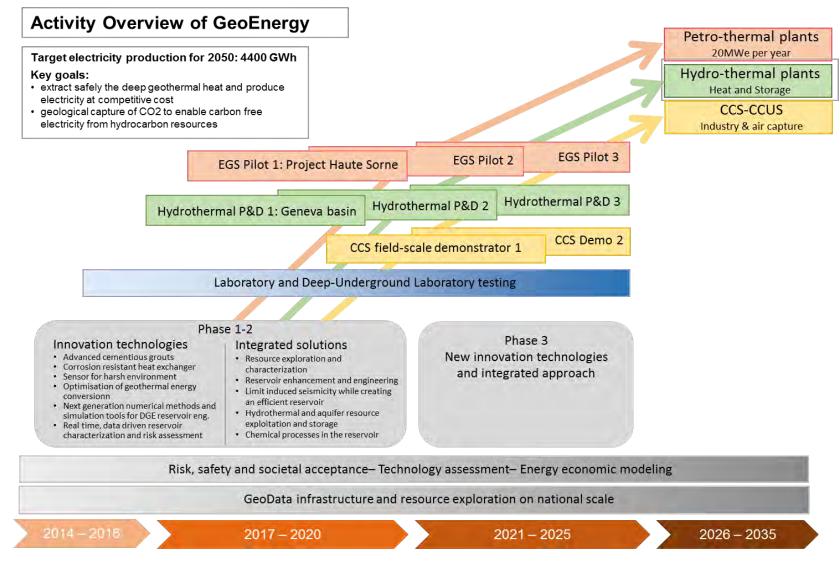
Accelerating CS Technologies

Enabling a Low-Carbon Economy via Hydrogen and CCS

Proposal acronym:


ELEGANCY

Call: ERA-NET Cofund ACT stage 2, full proposal, deadline 2017-01-16


Project coordinator: Dr Svend Tollak Munkejord, Chief Scientist, SINTEF Energy Research E-mail: svend.t.munkejord@sintef.no, Mobile phone: +47 47378042

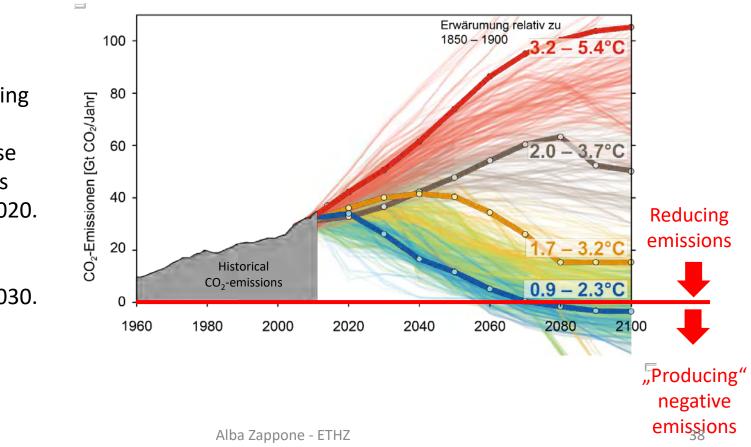
List of applicants

Note	Organization name	Acronym	Country	Organization type
Main applicant	SINTEF Energy Research	SINTEF	Norway	Research institute
	Arntzen de Besche	AdeB	Norway	Law firm
	Aker Solutions	AKSO	Norway	Technology provider
	Gassco AS	Gassco	Norway	Natural gas network operator
National consor- tium leader, UK	Imperial College London	ICL	UK	University
	British Geological Survey	BGS	UK	Research institute
	Scottish Enterprise	SE	UK	Development agency
	Sustainable Decisions Ltd	SDL	UK	Consultancy firm
	INEOS Chemicals Grangemouth Limited	INEOS	UK	Petrochemical company
National consor- tium leader, CH	ETH Zürich	ETH	CH	University
	Swiss Competence Center for Energy Research – Supply of Electricity	SCCER	СН	University/Research institute
	Paul Scherrer Institute	PSI	CH	Research institute
	Climeworks AG	CW	CH	Technology provider
	Energie 360°	E360	CH	Natural gas grid operator
	First Climate AG	FC	CH	Consultancy firm
National consor- tium leader, DE	Ruhr-University Bochum	RUB	DE	University
and a second second	Open Grid Europe	OGE	DE	Natural gas grid operator
	Uniper Energy Storage	UES	DE	Technology provider
National consor- tium leader, NL	Energy Research Centre of the Netherlands	ECN	NL	Research institute
	Netherlands Organisation for Applied Scientific Re- search	TNO	NL	Research institute
	Utrecht University	UU	NL	University
	Shell	Shell	NL	Energy company
Cooperation partner	Swerea MEFOS	MEFOS	SE	Research institute
Cooperation partner	Groupe Européen de Re- cherches Gazières	GERG	BE	Industry association

Roll-out

Prototyping

Major roadblocks for CCS from my layman's perspective

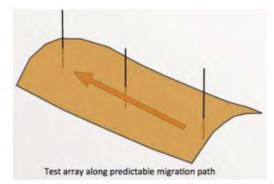

- No business or regulatory case for CCS. Little industry in CH-.
- Not the most favorable geology in CH, no hydrocarbon reservoirs.
- Large uncertainty.
- Opposition from supporters of renewable energy.
- No scientific CCS 'hero' (?).
- No funding avenue for a test site.
- Lack of public acceptance (?), NIMBY
- etc.

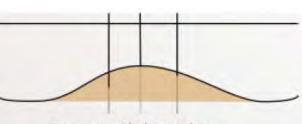
But: We probably need CCS, DACCS – and/or geo-engineering. And changes may come more quickly than we think

Switzerland is aiming at:

- 20% greenhouse gases emissions reduction by 2020.
- 50% emissions reduction by 2030.

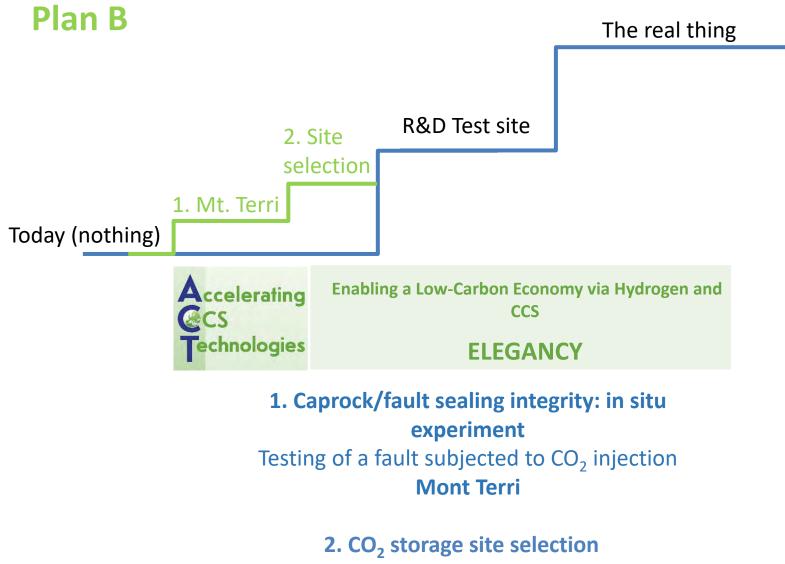
SCCER


SoE



Phases of the storage roadmap

- We had a plan for the next step since CARMA: a test site
- But we cannot afford it. So:



Test array	in	anticlinal	structural	trap
------------	----	------------	------------	------

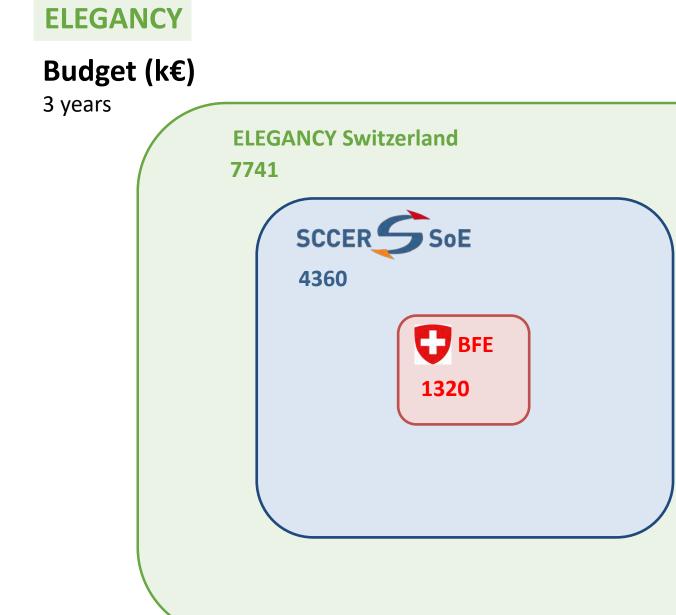
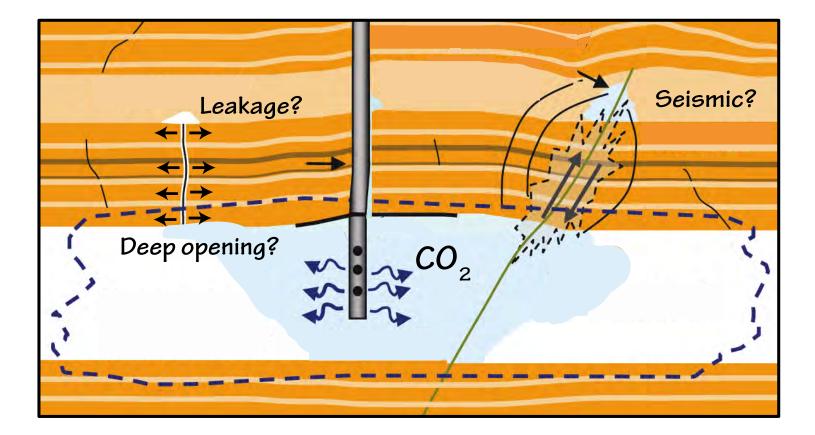
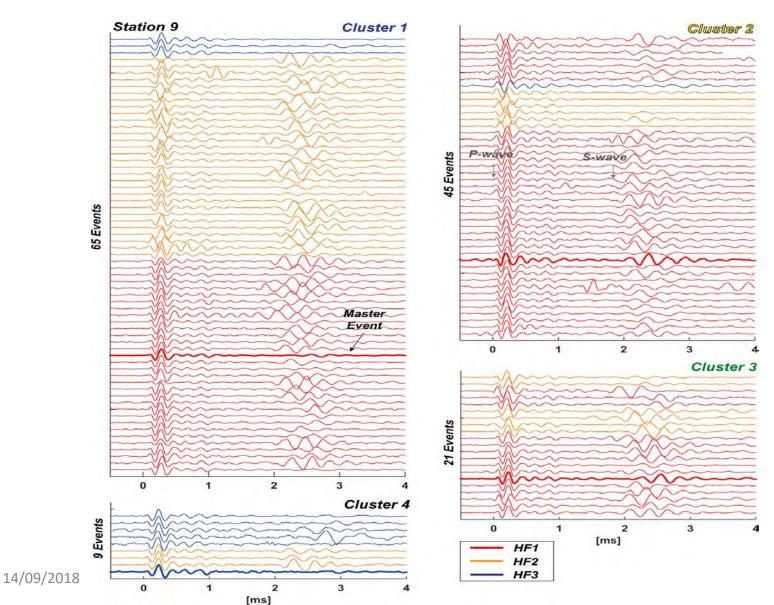

	Year 1	Year 2	Year 3	Year 4-5	Year 6-7	Year 7-post
	PHASE 1	PHASE 2	PHASE 3	PHASE 4	PHASE 5	PHASE 6
Co2 storage Explore and drill	Test site design Risk Dialogue	Risk Dialogue Permitting				
pliot well in Switzerland (CO2			Seismic exploration	Site aquisition		
ransported by Truk)				Drilling Permit	Drilling and Installation Operations	
					Installation Operations	Injection & Monitoring

Fig.7: Draft CO₂ storage pilot master time plan. 14/09/2018 Alba Za

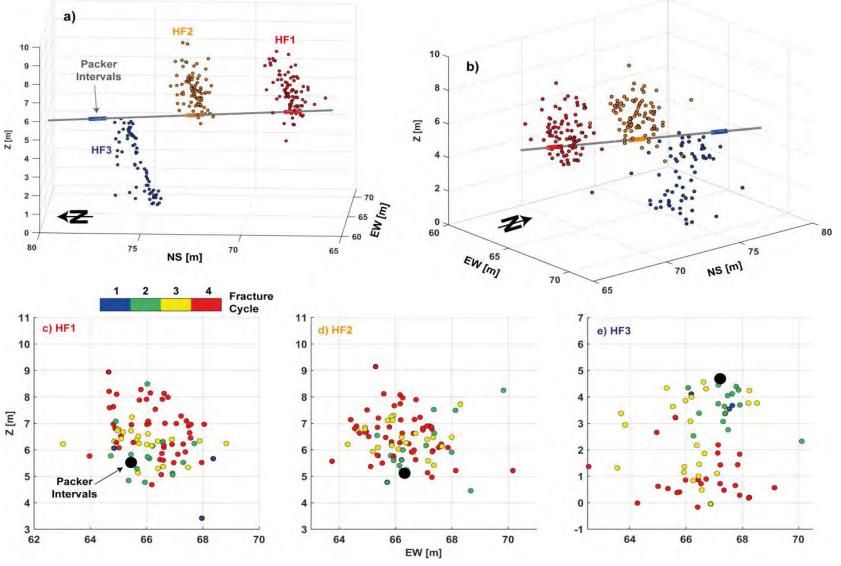

Caprock/fault sealing integrity: in situ experiment Testing of a fault subjected to CO₂ injection Mont Terri CS-D

- Improve the understanding of the dynamic behavior of caprocks over a range of spatial and temporal scales
- Advance the state-of-the-art by bridging the gap between the laboratoryand the reservoir-scale
- De-risking CO₂ injection operations



• Pilot project implementation or «pilotization».

Roles of geophysics?

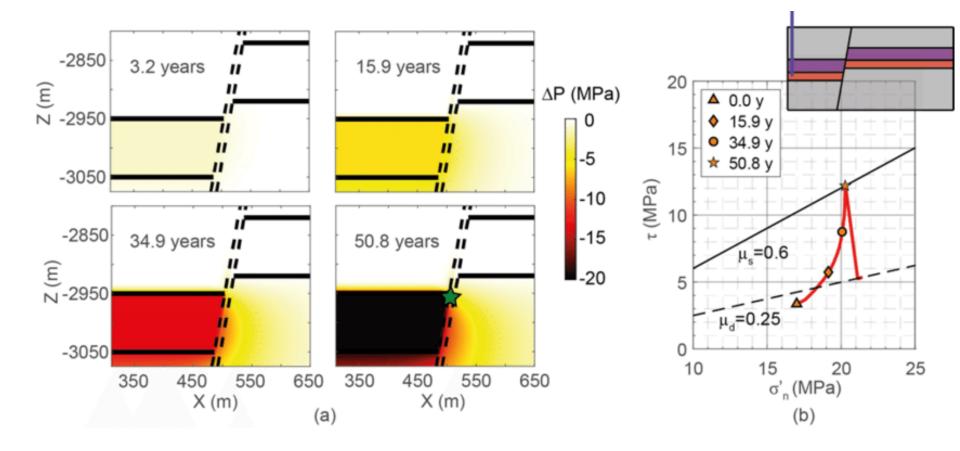


Geophysics - Seismology

44

Geophysics - Seismology

14/09/2018


Alba Zappone - ETHZ

Seismology with no EQs?

- Really?
- What are the conditions under which micro-seismicity or creep dominate? (→ LabQuake, HighStep)
- Is creep only micro-seismicity with very high b and below the detection threshold?
- Can we optimism out detection algorithms to see smaller events (cross-correlation ...)
- Can we track fluid propagation using ambient noise (or coda wave) interferometry?
- Model validation (\rightarrow Antonio)

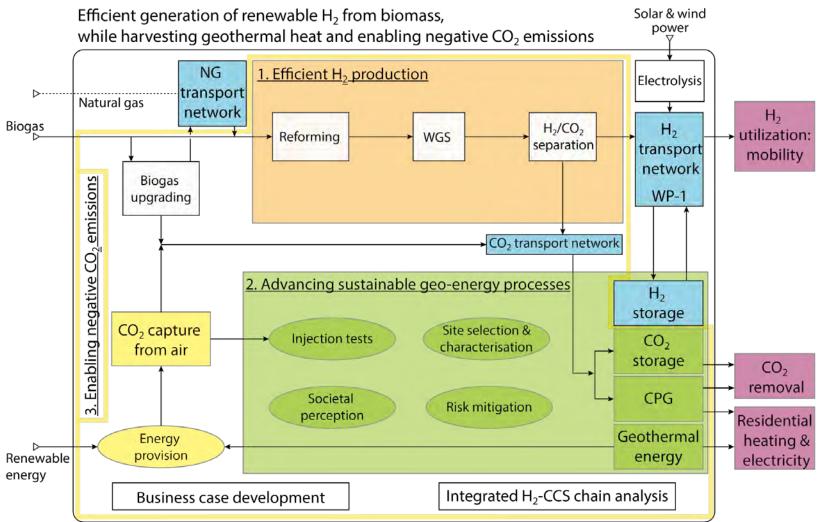
Risk Governance: Monitoring and Mitigation Strategies

Modelling of fault reactiviation potential

Doing what?

Based on literature study, modeling and expert elicitation continue to define for the Swiss context ('what would it need'):

- Site characterization
- Risk assessment strategies
- Monitoring strategies
- Mitigation strategies
- etc.

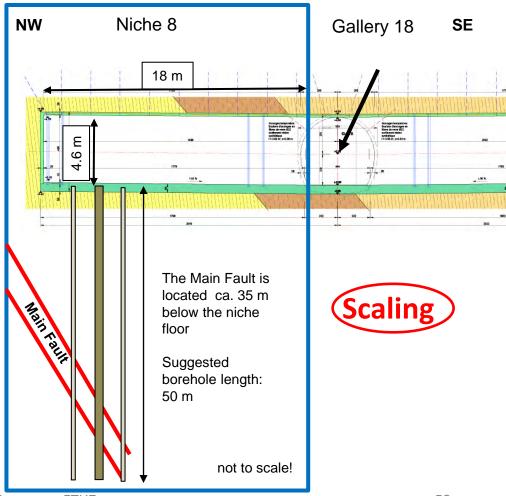

CCS: why are we here?

- Rising CO₂ levels and resulting climate change is deeply worrisome.
- Science in Switzerland, should try to make a difference.
- ELEGANCY: An opportunity to do something, may be not perfect at all, but better than nothing.
- And, hopefully, networking opportunity and a stepping stone.

Cooffederazione Sylizzella Conflederazion svoria	Bundesamt für Energie BFE		
Final Report 31 May 2013			
Roadmap for and Storage p	Roadmap for a Carbon Dioxide Capture and Storage pilot project in Switzerland		

ELEGANCY

Swiss case study


ELEGANCY

Caprock/fault sealing integrity: Mont Terri experiment

Technical layout

- 1 central injection borehole with two intervals in the Main Fault (scaly clay fabric and fractured zone). Injection of a CO₂-rich brine.
- Ca. 7-8 months of continuous injection, with pulse tests before and during injection.
- 3 to 5 monitoring boreholes for geophysical characterisation (active/passive seismic, etc.).
- Post-experiment: 2-3 sampling boreholes for geochemical characterization.

Alba Zappone - ETHZ