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The use of this mortar technique has previously been hindered by the absence of an efficient way to compute the

projection operator. The assembly of the operator requires the detection of intersections between the non-matching

surfacemeshes, which is a complex task in parallel, as the portions of the intersecting meshes might reside on different

compute nodes. Only with the relatively recent introduction of the MOONolith library [30] has this task become

feasible for parallel computing. UsingMOONolith, the projection operator is assembled with libMesh [31] and custom

components of theMOOSE framework [32].

This, and the reliance on a finite element formulation, makes it feasible to apply the method to a wide range of

problems, since themethod can be incorporated into the vast number of available finite element software packages.

Here, we combine the projection operatorwith custom components fromPETSc [33] and theMOOSE framework [32] to

conduct our numerical experiments. However, and even thoughwe use a new parallel implementation of amortar-based

contact method, the focus of this article is not on software, but on establishing a newmethod and tool for studying

contact in the geoscience community. We thus put a strong focus on the formulation of the rock, or other solid, contact

conditions, in particular the non-penetration condition in its strong, weak and discretized form (Equations 9, 16, 23).

To our knowledge, this is the first application of a parallel, two-body contact method that uses amortar technique for

non-matching solid surfaces in three dimensions.

This paper is organized as follows. In Section 2, we formulate the two-body contact problem. Thenwe introduce

themortar projection and its discrete assembly, followed by the change of basis transformations to solve the resulting

system. In Section 3, we show the characteristic boundary stresses fromHertzian contact and simulations of rough

fractures, subjected to increasing the normal load, which exhibit the characteristic nonlinear closing behavior of a

fracture under increased normal stress.

2 | METHODS

The following section contains brief introductions of the two-body contact problem, themortar projection at the contact

boundaries and the basis transformations needed to solve the two-body problem. An example for two-body contact on

nonmatching grids is shown in Figure 1, where themesh discretization on the fracture surface is shown for a cylindrical

specimenwith a fracture normal to the cylinder axis in the center.

F IGURE 1 Mesh used for the numerical simulations with: A) The two specimen halves which are separated by the
fracture; B) The rough fracture surface of the lower specimen half. C) Normal view on the two non-matchingmeshes of
the fracture surfaces.

The mechanical behavior of fractures in solids, such as rocks, has 
strong implications for reservoir engineering applications. Deformations, 
and the corresponding change in solid contact area and aperture field, 
impact rock fracture stiffness and permeability thus altering the 
reservoir properties significantly.  

Simulation of contact between fractures is numerically difficult. The 
non-penetration constraints lead to a nonlinear problem and the surface 
meshes of the solid bodies on the opposing fracture sides may be non-
matching. We use a parallel mortar method to resolve the contact 
conditions between the non-matching surfaces, a three dimensional 
finite element formulation of linear elasticity and linearized contact 
conditions. 
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F IGURE 2 Two-body problem: A) Schematic of the contact problem between two spheres. The dotted lines indicate
the initial position of the bodies, the solid lines show the contact configuration. B) Two-body problem for rough rock
fractures. Two rock cylinders in open configuration (left), in closed configuration (right), and a close-up of the rough
contact zone (bottom).

Sobolev spaces, satisfying the Dirichlet boundary conditions (Eq. 5) andwe define the bilinear form a(u,v ):

a(u,v ) :=
’

↵2m,s

π
⌦↵

Ei j l muk ,j vl ,m dx w ,v 2 X, (12)

and the linear form f(v ) := (v , f )0;⌦ + (v , p)0;Γn . Furthermore, we introduce the convex set of admissible displacements

K ⇢ X:

K := {u 2 X |[u]  g }. (13)

Here the inequality needs to be interpreted pointwise. We can now state the contact problem in its weak form as the

minimum of the energy functional J (u) := 1
2 a(u,u) − f (u): Find a u 2 K such that:

J (u)  J (v ), [v 2 K . (14)

We end this subsection by introducing the finite element spacesXh := Xh (⌦m )⇥Xh (⌦s ) associated toX and appropriate

triangulations Tm

h
and Ts

h
of⌦m and⌦s withmeshwidth h. Using the basis functionsφi ofXh we define

A := a(φi ek ,φj el ) and fh with (fh )i := f(φi ek ), i , j = 1, ...,N ; k , l = 1, ..., 3, (15)

where N is the number of nodes of the meshes T↵

h
, ↵ 2 m, s and (ei )i=1,2,3 are the standard basis vectors in“3. A 2

“3N⇥3N is usually referred to as the stiffness matrix and fh 2 “3N as the right-hand side in the FEM context. The

following subsections show, how the discretized system is solved by applying a change of basis on A. A weak and

Figure: Left: Two-body contact problem. Right: Formulation of linear 
elasticity and frictionless contact with boundary conditions.

Mortar approach 
We use a Mortar approach, in which the test space is dual to the trace 
space of the finite element space. The non-penetration condition is 
enforced in a weak sense. The resulting discretization error is local and 
can be reduced with local refinements.
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discretized version gh of g is obtained as a byproduct of the computation of themortar projection routine.

2.2 | Mortar-Approach

Webegin this section by introducing the trace spacesXh (ΓmC ) ofXh (⌦m ) andXh (ΓsC ) ofXh (⌦s ). The aim of ourmortar ap-

proach is to replace the strong non-penetration condition in Equation 9 in such away, that we only allow for penetration

in the normal direction in a weak sense:

π
Γs
C

�
[u] − g

�
λ
L
dγ  0 [λL 2 L, (16)

where L is a dual space ofMh := Xh (ΓsC ), defined as:

L := {λ = λ
Mh · nΦ |λMh 2 Mh ,

π
Γs
C

λ λ
s
dγ ≥ 0, [λs 2 Xh (ΓsC ) , λ

s ≥ 0}. (17)

The intent of this definition is that the positivity of the λ’s ensures that theweak non-penetration condition is equivalent

to the strong one asymptotically. However, in practice the weak non-penetration condition is difficult to enforce: First,

in the discrete setting, the elements um
h

2 Xh (ΓmC ) and us
h
2 Xh (ΓsC ) that would have to form the jump [u], are apart and

second, even if they were in contact, i.e. g = 0, they would have non-matching nodes. Hence, an additional operator

is needed to relate the nodes of the master side to the slave side of the contact boundary - our mortar projection  .

The construction of is deduced in "reverse" by assuming the previously introducedmappingΦ, which is part of the

solution, already exists. We demand that themapping : Γs
C
! Γs

C
is meaningful, such that starting with a test space

Mh := Xh (ΓsC ), the following L
2-orthogonality holds for the elements um

h
◦ Φ 2 Xh (ΓsC ):

π
Γs
C

�
 (um

h
◦ Φ) − u

m

h
◦ Φ

�
vh dγ = 0, [vh 2 Mh . (18)

As we need a discrete representationT of , we reformulate the weak equality (Eq. 18) to:

�
 (um

h
◦ Φ),v

�
L2(Γs

C
) = (um

h
◦ Φ,v )

L2(Γs
C
), [v 2 Mh , (19)

and introduce the bases (λm
i
)i=1,...,Nm , (λs

i
)i=1,...,N s , (λMh

i
)
i=1,...,NMh

, ofXh (ΓmC ),Xh (ΓsC ) andMh , with N
m ,N s = N

Mh be-

ing the dimension of each space. Then we write the elements um ◦ Φ,  (um ◦ Φ) and v in the basis representations

u
m ◦ Φ =

Õ
i=1,...,Nm fi (λmi ◦ Φ), (um ◦ Φ) = Õ

j=1,...,N s hj λ
s

j
, v =

Õ
k=1,...,N s lk λ

Mh

k
, and reformulate Equation 19 to:

✓ ’
j=1,...,Nm

fj (λmj ◦ Φ), λMh

k

◆
L2(Γs

C
)
=

✓ ’
i=1,...,N s

hi λ
s

i
, λ

Mh

k

◆
L2(Γs

C
)
, [k = 1, ...,N s . (20)

The discrete operatorT := D
−1
B is now definedwithD := (dki )k ,i=1,...,N s and B := (bkj )k=1,...,Nm ,j=1,...,N s through:

dki
:= (λs

i
, λ

Mh

k
)
L2(Γs

C
) I d =

π
Γs
C

λ
s

i
λ
Mh

k
dγ I d and (21)

bkj
:= (λm

k
◦ Φ, λMh

j
)
L2(Γs

C
) I d =

π
Γs
C

(λm
k
◦ Φ)λMh

j
dγ I d , (22)

Eq: Weak non-penetration condition over the slave side of the boundary. 
The condition ensures that the overall jump [u] of the displacements across 
the fracture is smaller than g, tested against a dual space L of the trace 
space at the slave boundary.

Implementation 
We implemented the contact simulation using MOONolith, libMesh, 
PETSc and MOOSE. All components are open source and designed for 
parallel computing.

Numerical experiments 

The simulations ran on 4 nodes (2 x Intel Xeon E5-2650 v3 @ 
2.30GHz) with 10 CPU’s each, on the cluster of the Institute of 
Computational Science in Lugano, Switzerland.
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F IGURE 5 View of the different aperture fields under increasing confining stresses of 0.25, 2, 10 and 20MPa.

F IGURE 6 Left: 3D representation of the approximately horizontal fracture. Right: 2D view of the fracture shown
on the left. Open regions of the fracture are shown in yellow.

indicates cavities. In Figure 4, we illustrate the overall behavior of the aperture field during closure. As the confining

stress increases, the histogram is shifted to the left and the aperture field is distributed around a lowermean.

Hence, our method replicates the closure of the fracture in contact, free of intersections, i.e., free of over-closure.

Studying the aperture field, the cross-section and the aperture histogram (Figure 5, 6, 4), we see that even at confining

stresses of 10 and 20MPa, the fracture is far from "closed". Small cavities and channels still exist and the deformed

fracture geometries can be used for simulating fluid flow under increasing confining stresses. The development of the

vertical stresses is shown in Figure 7. The vertical stresses develop around the few contact points for an axial load of

0.25MPa and spread over the contact surface when loads of more than 10MPa are applied. Comparing Figures 5 and 7,

we can observe, that the first vertical stresses form around regions with small apertures (dark parts), which become

more pronouncedwhen the confining stresses are increased. In Figure 8, we show a cross section of the fracture with

the vonMises stresses developing at the contact nodes under increasing loads. In contrast to simpler contact models,

we are able to observe , that the stresses develop from the contact surface in non-orthogonal directions in the interior

of the body. This enables the observation of stress concentrations and stress shadows around contact regions.

While this study focuses primarily on contact detection , normal stresses, aperture field development and fracture

closure, intricate knowledge of stress field variation around the contact zone is of imminent importance. This is the case,

as localized stress variations around zones of contact can lead to plastic deformation and failure, which permanently

alter themechanical and hydraulic behavior of the fracture [12]. The extent of stress concentrations around contact

12 VONPLANTA ET AL.

Stresses in normal direction zz

F IGURE 7 Top view of the lower fracture surface for confining stresses of 2, 10 and 20MPa. Color indicates the
vertical stresses zz .

F IGURE 8 Color indicates vonMises stresses around contact points during closure of the fracture at confining
stresses of 0.25, 1 and 2MPa.

zones depends on both external load as well as on fracture surface topographies. The presented approach therefore

enables an estimation of stress extrema for fracture topographies commonly encountered in specific rock types.

Rock fractures subjected to normal loading show a characteristic nonlinear fracture closure curve, where fracture

closure becomes increasingly smaller for the same load increment, until it approaches the behavior of elastic deforma-

tion in a solid body [4, 9, 5, 12, 11, 13]. The fracture closure curve obtained from our numerical experiment is shown

in Figure 9 for increasing axial loads from 0.25 to 20MPa. Here, we increased the axial load incrementally in steps of

0.25MPa from0 to 2MPa and then in steps of 1MPa from2 to 20MPa. The fracture closure (displacement) is measured

as the average displacement of nodes in zones of about 1mm thickness, approximately 2.5 cm above and 2.5 cm below

the fracture. Displacement is measured at such a small distance from the fracture to avoid large heterogeneities in

displacement due to the heterogeneous distribution of surface height and contact over the fracture surface . To exclude

elastic displacement due to the axial load on the lower specimen half, the average displacements of the zone in the lower

specimen half are subtracted from the upper zone (see also [11]). The curve in Figure 9 shows, that the displacements

become smaller when the confining stresses become larger, eventually leading to a linear relationship between axial

load and displacement . The shape of the curve can be explained by noting that an increase in loading results in more

areas of the fracture being in contact, increasing the overall resistance to the confining stress until a quasi-linear elastic

response is reached. This is a well known characteristic of loading curves and, together with the obtained boundary

stresses for the Hertzian contact, underlines the soundness of our approach.

Figure: Top: Von Mises stresses developing inside the rock under increasing 
confining pressure. Bottom: Aperture fields under increasing normal stresses.
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F IGURE 9 Simulated loading curve, showing displacement (i.e., fracture closure) versus axial load.

4 | CONCLUSIONS

Wepresented a parallel mortar approach to compute contact between two rough fracture surfaces with non-matching

meshes, employing linear elasticity and linearized contact conditions. Unlike penalty methods, neither solution nor

convergence depend on an external parameter and over-closure of the fracture is not a concern. To test our approach,

we used complex fracture geometries, obtained from a real granite rock. The high-resolution 3D fracture geometries

were resolved from a rock specimen that had undergone laboratory experiments . We have demonstrated the validity

of our method by reproducing the boundary stresses for Hertzian contact and the characteristic nonlinear closing

behavior of a fracture under increasing normal loads. The presentedmethodology enables investigation of the stress

field development and its variations in the solid bodies, fracture aperture field, contact area and other behavior for

arbitrary complex surface geometries.

Our implementation uses open source software components that are designed for parallel computing. In particular,

we usedMOOSE for the finite element assembly andMOONolith for the computation of themortar transfer operator.

Together with our contact formulation, we can extend ourmethod in three directions: First, extend our formulation of

frictionless contact to include friction as in [27, 28]. Second, use our formulation as a stepping stone for a wide class of

more efficient multigrid obstacle solvers [27, 28, 29]. And third, leveraging our implementation inMOOSE, to simulate

fluid flowwith the deformed fracture in a fluid structure interaction approach, which we have outlined in [44].
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F IGURE 4 Histograms of the aperture distribution at increasing confining stresses of 0.25, 2, 10 and 20MPa. As the
confining stress increases, areas with high aperture become less frequent, while frequency of low aperture regions
increases.

In this section, aperture is defined as the values of the gap function g , which reside on the nodes of the slave side.

In its implementation, g differs from theory, as on a finite element mesh, normals are defined on the surfaces of the

element sides and not at the nodes. The direction of g is thus computed as the average of the normals of all sides of the

mesh surrounding each node of the contact side. Still, we believe this to be amore accurate description of the distance

between the fracture surfaces than a simple projection in the normal (0, 0,1)t -direction andwe thus use the value of g
as aperture. For the assembly of the mortar operator, only intersections up to a reasonable distance of 0.21mm are

detected and thus the maximum value of the aperture is fixed at 0.21mm. This does not impact the accuracy of the

contact method, as the displacements of the rock are smaller than this maximum value.

Figure 5 shows the closure of the fracture aperture field under increasing normal loads from 0.25 to 20MPa. The

aperture field is highly heterogeneous across the interface with isolated regions of small apertures, for example, right of

the center of the surface. Increasing the confining stress transforms the field significantly: At 0.25MPa, only few parts

of the surface are in contact and the apertures across large parts of the surface are at themaximum value of 0.21mm.

The aperture field then decreases significantly for a confining stress of 2MPa and evenmore so at 10MPa. There are

regions however, which do not close, so that apertures of at least 0.21mm remain, even when the confining stress is

further increased to 20MPa. The closing of the fracture is again illustrated in Figure 6, where we show a cross section

of the fracture during closure with the open part of the fracture depicted in yellow. At 0.25MPa, there are only few

contact areas and a large part of the fracture is still open. One can observe how the fracture closes more and more

with increasing normal stress until, at 20MPa, the only open areas are essentially those, where the fracture geometry

Figure: Left: distribution of aperture fields under increasing pressure. Right: 
nonlinear closing behavior of the fracture under increasing load.

Enforcing the weak penetration is hard in practice. The nodes of the 
finite element discretization are non-matching and apart, and must be 
related to each other using a mortar projection. The parallel assembly of 
this operator has only become feasible recently with the introduction of 
the MOONolith library.
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F IGURE 3 Hertzian contact problem: A) Setup of the Hertzian contact problem, showing a half-sphere which is
pressed into a flat surface; and B) Resulting contact stress distribution on the flat surface.

3 | NUMERICAL EXPERIMENTS

3.1 | Hertzian contact

Contact methods are commonly validatedwith variants of the Hertzian contact problem, a termwhich stems from a

study by Heinrich Hertz in which he derived analytical solutions from two bodies in contact which have elliptic contact

interfaces [40]. Here we set up a two-body problem in which a half sphere is in contact with a cube. Valid contact

methods need to replicate the characteristic parabolic shape of the boundary stresses, as can be observed for the

approach presented in Figure 3.

3.2 | Contact between two rough rock surfaces

The capability of the presentedmethodology to solve contact problems between highly complex surface topographies

is demonstrated in a numerical experiment with a rock specimen taken from the Grimsel Test Site in Switzerland. The

fracture geometries are adapted from previous studies [41, 42, 11] and are embedded in a cylindrical rock specimen

consisting of granodiorite rock (Fig. 1). Here, an increasing compressive load is applied to the specimen cylinder top in

the axial direction (z-direction), while displacement in the z-direction is fixed to zerowith aDirichlet boundary condition

on the cylinder bottom. Thematerial of the cylinder is defined to be linear elastic with YoungsModulus E = 10MPa and

Poisson ratio ⌫ = 0.33.

Fracture surfaces were digitized with photogrammetric techniques [6, 43, 11], which produce amesh of triangular

elements at the body surface. From the surface mesh, a volumetric mesh of tetrahedral elements can be generated

for the solid bodies with the software TRELIS. The upper body contains 101’637 nodes, the lower body 98’866 nodes,

which results in 601’509 degrees of freedom for the simulation. The upper contact boundary consists of 8793 nodes,

the lower one has 7898 nodes. Since themeshes are non-uniform, these numbers are difficult to relate to a resolution,

which is by definition ameasure that only applies to uniformmeshes. Wewould argue however, that non-uniformness

gives us at least the same, or even higher, "effective" resolution as a uniformmesh, since the nodes are distributedmore

effectively according to the complexity of the rock surface (see Figure 1). The simulations themselves ran on 4 nodes

(2 x Intel Xeon E5-2650 v3@ 2.30GHz) with 10 CPU’s each, on the cluster of the Institute of Computational Science in

Lugano, Switzerland.

Figure: Hertzian contact; correct methods must replicate the parabolic 
shape of the boundary stresses      as shown on the right.σ n

Validation 
We first validated our method with a Hertzian contact experiment, after 
Hertz who derived analytical solutions for this problem class in 1881. 

Fracture closure 
We meshed two rock bodies from granite specimens of the Grimsel 
test site in Switzerland and applied an increasing load on top of up to 
20MPa in direction of the z-axis. The aim here is to replicate the 
nonlinear closing behaviour of fractures and to see how our 
formulation gives insight to interior stresses and the change in 
aperture distributions. 

Outlook 
 
We have developed a parallel contact method using a mortar approach. 
We now have a tool to simulate contact in rough fractures, the results of 
which we can further use in Fluid simulations within fractures.

Università
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2.1 | Contact formulation

Wegive a brief introduction to the formulation of the contact problem and its finite element discretization. For themost

part we follow the formulations in [24, 28] and we refer the reader to these articles and the references cited therein for

amore in-depth introduction.

We consider a master body ⌦m ⇢ “3 and a slave body ⌦s ⇢ “3. The boundary Γ↵ , ↵ 2 {m, s } of each body

consists of three non overlapping parts: of a Neumann boundary Γ↵
N
, a Dirichlet boundary Γ↵

D
and a boundary Γ↵

C
,

where the possible contact occurs. The displacement field on the bodies u := [um ,us ] is separated into displacements

on the master and slave body, respectively. The material of ⌦↵ is considered to be linear elastic. Hooke’s tensor

(E ↵

i j ml
)3, 1  i , j , l ,m  3 is used to formulate the stresses σ given by Hooke’s law, using the index ,j to abbreviate

derivatives with respect to xj :

σi j (u↵ ) = E
↵

i j ml
u
↵

l ,m . (1)

We assume that a bijective mappingΦ : Γs
C
! Γm

C
exists, whichmaps the points on the slave side of the boundary to the

possible contact point on themaster side. We then define the vector field of normal directions nΦ :

n
Φ : Γs

C
! ”2, n

Φ(x ) :=
(

Φ(x )−x
|Φx−x | ifΦ(x ) , x (no contact)

n
s (x ) otherwise

(2)

The gap function g : “3 ! “, x 7! |Φ(x ) − x | thenmeasures thewidth of the gap between the two bodies in the normal

direction (i.e., aperture of the fracture in geophysics) andwe also define the point-wise jump [u] := (us − u
m ◦ Φ) · nΦ

which is to be smaller than the gap g : [u]  g . This condition is only meaningful in the linearized contact setting, where

the bodies are close together and the outer normals n↵ , ↵ 2 {m, s } are parallel, i.e. we have ns := n
Φ and nm := −ns .

For the contact conditions we need stresses and displacements with respect to the outer normal direction and the

tangential direction t :

σ
↵
n = n

↵

i
· σi j (u↵ ) · n↵j , u

↵
n = u

↵ · n↵ ,
σ
↵

t
= σ(u↵ ) · n↵ − σn · n↵ , u

↵

t
= u

↵ − u
↵
n · n↵ .

(3)

With this we state the contact problem in its strong form: We assume that the body is in an equilibrium state (Eq. 4)

withDirichlet boundary conditions (Eq. 5), Neumann boundary conditionswith pressure pi (Eq. 6) and contact boundary

conditions (Eq. 7). In the right column we have the contact conditions, where Equation 9 is the non-penetration

condition, Equation 10 is the complementary condition and Equation 11 states that we have no stresses in tangential

directions, i.e., we are considering frictionless contact.

−divσ(u) = f in ⌦s [ ⌦m (4)

ui = 0 on Γ↵
D

(5)

σi j (u) · nj = pi on Γ↵
N

(6)

σn  0 on ΓC . (7)

σn (um ◦ Φ) = σn (us ) on ΓC (8)

[u]  g on ΓC (9)�
[u] − g

�
σn (us ) = 0 on ΓC (10)

σT = 0 on ΓC . (11)

For the finite element discretization, we use the space X := H1
0(⌦m ) ⇥ H1

0(⌦s ), whereH1
0(⌦↵ ), ↵ 2 {m, s } are the
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σ
↵

t
= σ(u↵ ) · n↵ − σn · n↵ , u
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withDirichlet boundary conditions (Eq. 5), Neumann boundary conditionswith pressure pi (Eq. 6) and contact boundary

conditions (Eq. 7). In the right column we have the contact conditions, where Equation 9 is the non-penetration
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directions, i.e., we are considering frictionless contact.
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XY

Z

t ≈ 8 ms t ≈ 36.5 ms

SmallFlex Project
Small hydropower plants are expected to produce a large share
energy by 2050. The SmallFlex project is demonstrator for flexible
Small Hydropower Plants (SHPs) and aimed to investigate the eco-
compatibe winter peak energy production by them. SmallFlex has
been integrated in the activities of the SCCER-SoE [2]. A Pelton
turbine is being simulated in different operating points with our in-
house GPU-accelerated software, GPU-SPHEROS to predict the
Pelton efficiency, torque and powerplant flexibility. Here is the
geometry:

SCCER-SoE Annual Conference 2016

GPU-accelerated simulation of free jet deviation by 
rotating Pelton buckets for SmallFlex project

S Alimirzazadeh, E Jahanbakhsh, A Maertens, S Leguizamón, T Kumashiro, K Tani, F Avellan

References
S Alimirzazadeh, E Jahanbakhsh, A Maertens, S Leguizamon, F
Avellan, GPU-Accelerated 3-D finite volume particle method,
Computers & Fluids. 171 (2018) 79–93
C Münch, P Manso, C Weber, M Staehli, M Schmid, C Nicolet, F
Avellan, A Schleiss, J Derivaz, SmallFlex: Demonstrator for flexible
Small Hydropower Plant, SCCER-SoE Annual Conference 2017

GPU-SPHEROS
GPU-SPHEROS is a GPU-accelerated particle-based versatile solver
based on Arbitrary Lagrangian Eulerian (ALE) Finite Volume Particle
Method (FVPM) which inherits desirable features of both Smoothed
Particle Hydrodynamics (SPH) and mesh-based Finite Volume
Method (FVM) and is able to simulate the interaction between fluid,
solid and silt [1]. With GPU-SPHEROS, the goal is to perform
industrial size setup simulations of hydraulic machines.

Validation for turbulent impinging jet on a flat plate
• Turbulent fluid jet impinging on a flat plate (a similar case to a jet

deviation by rotatin Pelton turbine buckets) has been simulated as a
validation test case (Cjet = 19 m·s-1 and jet inlet is located at Zjet =
4xDjet while plate is located at XY plan.

• Both the pressure and velocity are in a good agreement with ANSYS-
CFX finite volume/element solver results.

• The software has been then used to simulate of free jet deviation by
SmallFlex rotating Pelton buckets.

Validation for rotating Pelton turbine
• The torque generated by rotating Pelton turbine bucket has been validated

by the torque measurements for a Pelton geometry with available
experimental data.

• Two-equation Boussinesq-based RANS turbulence models have been
integrated with FVPM as an ALE method.

Y

Z

h j
=

 2
20

.1
 m

m

D
2
=

 3
3.

2 
m

m

Cjet = 20.34 m s-1

SmallFlex Pelton turbine
• A Pelton turbine has been simulated for its best efficiency point (BEP) with

GPU-SPHEROS and the torque has been predicted.
• Off-design conditions are being simulated to evaluate turbine efficiency and

hydropower plant flexibility.

ω = 534 rpm
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Motivation 

Hydro-mechanical (HM) processes in rough fractures are highly 
nonlinear and govern productivity or associated risks in a wide range of 
reservoir engineering problems.   

To enable high-resolution simulations of HM processes in fractures, we 
present an immersed boundary method to compute the fluid flow 
between rough fracture surfaces and adopt a variational parallel 
transfer operator to couple the fluid and the solid subproblem. 

We simulate both the incompressible fluid flow and the solid structure 
in a Finite Element framework. The structural fractures are modelled as 
a linear elastic material by using unstructured meshes embedded 
into structured fluid grids. 

The fluid and the solid solvers are coupled by transferring fluid 
velocities, pressure field and surface forces between the structured 
and the unstructured meshes by means of variational transfer operators.  

Cyrill von Planta(1), Daniel Vogler(2), Xiaoqing Chen(2), Maria GC Nestola(1), Martin O. Saar(2), Rolf Krause(1) 
1)Institute of Computational Science, Università della Svizzera italiana, Lugano,  6900, Switzerland 

2)ETH Zurich, Institute of Geophysics, 8092 Zurich, Switzerland 

Discussion 
The numerical experiments with real fracture geometries show 
that the approach is able to resolve the boundary of the rough 
fracture surface into the fluid and also to simulate the change of 
the fluid flow paths within the fractures under increasing normal 
loads.
References 

An immersed boundary method based on the L2-projection approach. Maria 
Giuseppina Chiara Nestola, Barna Becsek, Hadi Zolfaghari, Patrick Zulian, Dominik 
Obrist, and Krause Rolf. Proceedings of the 24rd International Conference on Domain 
Decomposition Methods, 2018.

A Parallel Approach to the Variational Transfer of Discrete Fields between Arbitrarily 
Distributed Unstructured Finite Element Meshes. Rolf Krause and Patrick Zulian. SIAM 
Journal on ScientiÞc Computing, 2016.

Fictitious Domain Method 

• The solid phase is embedded in the Fluid phase 

• Eulerian Formulation (Fixed Grid) for the fluid flow 

• Lagrangian Formulation for the solid structure 

Solve ßuid problem 
subject to velocity constraints

Solve structure problem
by adding the reaction forceCompute reaction force

Transfer reaction force

Transfer velocity

Compute velocity in the 
deformed conÞguration

Fluid
solver

Mechanics
solver

Transfer

Fixed point iteration

Results 

Simulations of hydro-mechanical processes  
based on the Immersed Boundary Method



116

SCCER-SoE Science Report 2018

SCCER-SoE Annual Conference 2018

Motivation: the FASTER project

Induced seismicity hazard from Enhanced Geothermal Systems
(EGS) needs to be reliably forecasted. The Swiss Seismological
Service (SED) has developed a hybrid 3D-2D model that forecasts
induced seismicity in EGS. The fracture distribution in the subsurface
is only known in a stochastic sense, hence to evaluate the seismic
hazard, in terms of the seismic events number and magnitude,
several fracture distributions have to be simulated with a Monte Carlo
approach. While fast solution methods are necessary to solve each
single sample, Multifidelity and Multilevel Monte Carlo methods are
necessary for accelerating the convergence of the expectation of the
number of seismic events. The idea behind these methods is to
employ surrogate models which are computationally cheaper but also
well-correlated with the detailed one. The project FASTER arises from
a strong collaboration between SED, ETH Zurich, USI-Lugano, and
the Swiss National Supercomputing Center (CSCS), in order to
improve the simulated model, the solution algorithms, and their
software implementation.

Toward a Multifidelity Method for Estimating
the Influence of Overpressure on Induced Seismicity

Alessio Quaglino, Marco Favino, Dimitrios Karvounis, Claudio Tomasi, Stefan Wiemer, Thomas Driesner, Rolf Krause

Surrogate models

1) Shorter final time

Despite the good correlation, the error is higher than standard MC

2) Space-time coarsening
Correlation between high- and all low-fidelity models
• ⍴12  = 0.8654 (1 level of coarsening) – cost 1/4
• ⍴13  = 0.8433 (2 levels of coarsening) – cost 1/16
• ⍴14  = 0.7496 (3 levels of coarsening) – cost 1/64

3) 0D model
correlation between distances of hypocenters and seismic events
• ⍴15  = 0.7574 (0D model) – cost negligible

Best combination of 2 models
• High-fidelity + 0D = error reduced to 43%
Best combination of 3 models
• High-fidelity + 2 levels of coarsening + 0D = error to 40%

Conclusions
• more statistical analysis on the facture networks may lead to better 

surrogates
• extension to 3d is under development
• etter solver to achieved desired mesh resolution

References

Dimitrios C. Karvounis, Valentin S. Gischig, Stefan Wiemer, Towards a 
Real-Time Forecast of Induced Seismicity for Enhanced Geothermal 
Systems, Shale Energy Engineering 2014
Karvounis, D. C., & Jenny, P. (2016). Adaptive Hierarchical Fracture 
Model for Enhanced Geothermal Systems. Multiscale Modeling & 
Simulation,
Karvounis, D. C., & Wiemer, S. (2015). Decision making software for 
forecasting induced seismicity and thermal energy revenues in 
enhanced geothermal systems. Proceedings World Geothermal 
Congress 2015
B. Peherstorfer, K. Wilcox, M. Gunzburger, Optimal model management 
for multifidelity Monte Carlo estimation, SIAM J. Sci Comp, 2015

Models and Methods

Balance of mass leads to a set of diffusion equations

Diffusion equation in a fracture is solved only when the fracture has
been triggered: pressure in its hypocenter exceeds a “sliding condition”.
Discretization is based on
• finite volume method;
• semi-implicit Euler schemes.

UQ problem

Interested in number of seismic events and maximum magnitude
Example 3D:
• Monte Carlo with 250 samples
• In particular, magnitude > 3.5
• 75 simulations out of 250 (30%)
• With ~250 samples, RMSE is 1% of the mean

Can we reach the same accuracy with less effort?

Multifidelity Monte Carlo
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where we used m

⇤
1 = p/(wT

r), see Theorem 1. We obtain with the definition of r⇤ in
Theorem 1

e(ŝ⇤(Z)) =
σ

2
1

p

 
kX

i=1

q
wi(⇢21,i − ⇢

2
1,i+1)

!2

. (30)

We therefore derive from the MSE (29) of the Monte Carlo estimator and the MSE (30)

of the MFMC estimator that e(ŝ⇤(Z)) < e(y
(1)
n (Z)) if and only if

w1 >

 
kX

i=1

q
wi(⇢21,i − ⇢

2
1,i+1)

!2

,

which is equivalent to (28).

Note that only the number of model evaluations m

⇤
1 of the high-fidelity model f (1)

appears in the definition of the MSE e(ŝ⇤(Z)), but that m

⇤
1 depends through r

⇤ on
m

⇤
2, . . . ,m

⇤
k, see the definition of m⇤

1 in (23).
Consider the condition (28) that is sufficient and necessary for the MFMC estimator

to achieve a variance reduction compared to the Monte Carlo estimator with the same

computational budget. With the MSE e(y
(1)
n (Z)) of the Monte Carlo estimator as derived

in (29) and the MSE e(ŝ⇤(Z)) of the MFMC estimator as derived in (30) we obtain the
ratio

γ ⌘ e(ŝ⇤(Z))

e(y
(1)
n (Z))

=

 
kX

i=1

r
wi

w1
(⇢21,i − ⇢

2
1,i+1)

!2

. (31)

The ratio (31) quantifies the variance reduction achieved by the MFMC estimator. The
ratio is in inverse proportion to the variance reduction and therefore the variance of
the MFMC estimator is small if the costs w1, . . . , wk and the correlation coefficients
⇢1,1, . . . , ⇢1,k of the models f (1)

, . . . , f

(k) lead to small terms in the sum in (31). Consider
a single term i 2 {1, . . . , k} in the sum in (31)

r
wi

w1
(⇢21,i − ⇢

2
1,i+1) .

The term shows that the contribution of the model f (i) to the variance reduction is high
if the costs wi are low and the di↵erence of the squared correlation coefficients ⇢21,i−⇢

2
1,i+1

is low. Thus, the contribution of a model is high if the squared correlation coefficient
⇢

2
1,i of model f (i) is similar to the squared correlation coefficient ⇢21,i+1 of the subsequent

model f (i+1). This shows that the contribution of a model cannot be determined by only
considering the properties of the model itself, but requires taking the properties of other
models used in the MFMC estimator into account. Furthermore, the condition (28) that
the MFMC estimator is computationally cheaper than the Monte Carlo estimator is not
a condition on the properties of each model separately, but rather a condition on the
properties of all models f (1)

, . . . , f

(k) together, i.e., on the collective whole of the models.
Corollary 1 and the discussion on the variance reduction and the ratio (31) of the MSEs

show that the correlation ⇢1,i between a random variable f (i)(Z) induced by the surrogate
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Single-fidelity Multi-fidelity [Peherstorfer15]
for i = 1, . . . , k and j = 1, . . . , k. In the following, we ignore models that are uncorrelated
to the high-fidelity model, and therefore we have ⇢

2
1,i > 0 for i = 1, . . . , k. We define

⇢i,k+1 = 0 for i = 1, . . . , k.
The Monte Carlo method drawsm i.i.d. realizations z1, . . . ,zm 2 D of Z and estimates

E[f (i)(Z)] by

y

(i)
m =

1

m

mX

j=1

f

(i)(zj) , (4)

for i = 1, . . . , k. The corresponding Monte Carlo estimator y

(i)
m (Z) is an unbiased esti-

mator of E[f (i)(Z)] [38]. If the variance σ

2
i 2 R (i.e., if the variance is finite), then the

MSE of the estimator y
(i)
m (Z) with respect to E[f (i)(Z)] is

e(y(i)m (Z)) = E
⇣

E[f (i)(Z)]− f

(i)(Z)
⌘2

�
=

Var[f (i)(Z)]

m

.

The cost of computing the Monte Carlo estimator are

c(y(i)m (Z)) = wim,

because the model f (i) is evaluated at m inputs, each with evaluation cost wi.

2.2. Problem formulation

Our goal is to estimate the expectation

s = E[f (1)(Z)] (5)

of the high-fidelity model f (1) with realizations of the random variable Z as inputs. We
seek an estimator with a computational budget p 2 R+ that optimally exploits the surro-
gate models f (2)

, . . . , f

(k) to achieve a lower MSE than the Monte Carlo estimator with
the same computational budget p. Stated di↵erently, we seek a multifidelity estimator
that achieves the same MSE as the Monte Carlo estimator but with a lower computa-
tional cost. We also seek an estimator that is unbiased with respect to expectation (5),
even in the absence of accuracy guarantees such as (1) on the surrogate models.

3. Multifidelity Monte Carlo

Our MFMC method derives auxiliary random variables from surrogate models and com-
bines them into the unbiased MFMC estimator using the control variate method. An op-
timization problem distributes the number of model evaluations among the high-fidelity
and the surrogate models. The optimization problem balances correlation strength and
relative computational costs such that the MSE of the estimator is minimized for a given
computational budget. We prove that the MFMC estimator is unbiased and derive the
condition under which the MFMC estimator has a lower MSE than the Monte Carlo

5

estimator with the same computational budget. Section 3.1 formulates the MFMC esti-
mator and shows that it is unbiased. Sections 3.2 to 3.4 derive the optimization problem
to balance the number of model evaluations across the high-fidelity and surrogate models
and provide an interpretation and discussion. Section 3.5 and Section 3.6 give practical
considerations and summarize the MFMC method in Algorithm 2.

3.1. Multifidelity Monte Carlo estimator

Consider the k models f

(1)
, . . . , f

(k). Let m = [m1, . . . ,mk]
T 2 Nk be a vector with

integer components 0 < m1  · · ·  mk and let

z1, . . . ,zmk
2 D (6)

be mk i.i.d. realizations of the random variable Z. For i = 1, . . . , k, evaluate model f (i)

at the mi realizations z1, . . . ,zmi of (6) to obtain

f

(i)(z1), . . . , f
(i)(zmi) .

The component mi of m is the number of evaluations of model f (i) for i = 1, . . . , k. De-

rive the Monte Carlo estimate y
(i)
mi as in (4) from themi model evaluations f (i)(z1), . . . , f

(i)(zmi)

for i = 1, . . . , k. Additionally, compute the Monte Carlo estimate y

(i)
mi1 from the mi1

model evaluations f

(i)(z1), . . . , f
(i)(zmi1) for i = 2, . . . , k. The Monte Carlo estimate

y

(i)
mi1 reuses the first mi1 model evaluations that are used for y

(i)
mi , and therefore the

corresponding estimators y

(i)
mi(Z) and y

(i)
mi1(Z) are dependent. The MFMC estimate ŝ

of s is then

ŝ = y

(1)
m1

+
kX

i=2

↵i

⇣
y

(i)
mi

− y

(i)
mi1

⌘
, (7)

where ↵2, . . . ,↵k 2 R are coefficients that weight the di↵erences y
(i)
mi−y

(i)
mi1 of the Monte

Carlo estimates y
(i)
mi and y

(i)
mi1 for i = 2, . . . , k. The MFMC estimator is denoted as ŝ(Z).

The structure of our MFMC estimator (7) is similar to the structure of multilevel Monte
Carlo estimators [15, 42]. Both correct an estimate of high-fidelity quantities with a
sum of estimates of di↵erences of lower-fidelity quantities. The distinguishing feature
of our MFMC method is the optimal selection of the number of model evaluations m

and of the coefficients ↵2, . . . ,↵k that is applicable to surrogate models of any type, as
introduced in the subsequent sections.
The following lemma shows that the MFMC estimator is an unbiased estimator of s.

Lemma 1. The MFMC estimator ŝ(Z) is an unbiased estimator of the expectation s of
the high-fidelity model f (1).

Proof. First note that we havem 2 Nk andm1 > 0 and therefore each model f (1)
, . . . , f

(k)

is evaluated at least once. We show that E[ŝ(Z)] = E[f (1)(Z)]. With the linearity of the
expectation, we have

E[ŝ(Z)] = E[y(1)m1
(Z)] +

kX

i=2

↵i

⇣
E[y(i)mi

(Z)]− E[y(i)mi1
(Z)]

⌘
. (8)

6

where Z1, . . . , Zmk
are random variables that are i.i.d. as the random variable Z. Con-

sider the case l 6= t and mi ≥ mj . The covariance Cov[f (l)(Zi0), f
(t)(Zj0)] with i

0 6= j

0

is 0 because the random variables Z1, . . . , Zmk
are independent, and therefore f

(l)(Zi0)
and f

(t)(Zj0) are independent. This simplifies (11) with mi ≥ mj to

Cov[y(l)mi
(Z), y(t)mj

(Z)] =
1

mimj

mjX

j0=1

Cov[f (l)(Zj0), f
(t)(Zj0)] . (12)

With the definition of the correlation coecient in (3), the equality (12) becomes

Cov[y(l)mi
(Z), y(t)mj

(Z)] =
1

mimj

mjX

j0=1

⇢l,tσlσt =
1

mi
⇢l,tσlσt , (13)

which shows the case l 6= t and mi ≥ mj . For the case l = t and mi ≥ mj , note that
⇢t,t = ⇢l,l = 1, which simplifies (13) to

Cov[y(l)mi
(Z), y(t)mj

(Z)] =
1

mi
⇢l,tσlσt =

1

mi
σ

2
l .

We therefore have shown the cases with mi ≥ mj in (10). To reduce the cases with
mi < mj to the shown cases with ≥, exchange mi with mj and l with t and exploit the
symmetry of the covariance.

Lemma 3. The variance Var[ŝ(Z)] of the MFMC estimator ŝ(Z) is

Var[ŝ(Z)] =
σ

2
1

m1
+

kX

i=2

✓
1

mi−1
− 1

mi

◆�
↵

2
i σ

2
i − 2↵i⇢1,iσ1σi

�
. (14)

8

The individual Monte Carlo estimators in (8) are unbiased, see Section 2.1, and therefore
it follows that

E[ŝ(Z)] = E[f (1)(Z)] +

kX

i=2

↵i

⇣
E[f (i)(Z)]− E[f (i)(Z)]

⌘
,

which simplifies to E[ŝ(Z)] = E[f (1)(Z)].

Because the MFMC estimator ŝ(Z) is unbiased, the MSE of ŝ(Z) with respect to s is

e(ŝ(Z)) = E[(s− ŝ(Z))2] = Var[ŝ(Z)] . (9)

The costs of deriving an MFMC estimate ŝ are

c(ŝ(Z)) =
kX

i=1

wimi = w

T
m ,

because to compute for i = 2, . . . , k

y

(i)
mi

− y

(i)
mi−1

the model f (i) is evaluated at the samples z1, . . . ,zmi , where the first mi1 samples are

reused to derive y

(i)
mi−1 .

3.2. Optimal number of model evaluations

The MFMC estimator defined in (7) depends on the number of model evaluations m 2
Nk and on the coecients ↵2, . . . ,↵k 2 R. We formulate the selection of the number
of model evaluations and of the coecients as an optimization problem. We first show
Lemmata 2 and 3 before we derive the optimization problem and present its solution in
Theorem 1.

Lemma 2. Consider the Monte Carlo estimators y
(l)
mi(Z) and y

(t)
mj (Z) with 1  i, j, l, t 

k. We find for the covariance

Cov[y(l)mi
(Z), y(t)mj

(Z)] =

8
>>>><

>>>>:

1
mi

⇢l,tσlσt if l 6= t and mi ≥ mj

1
mj

⇢l,tσlσt if l 6= t and mi < mj

1
mi

σ

2
l if l = t and mi ≥ mj

1
mj

σ

2
l if l = t and mi < mj

. (10)

Proof. We have

Cov[y(l)mi
(Z), y(t)mj

(Z)] =
1

mimj

miX

i0=1

mjX

j0=1

Cov[f (l)(Zi0), f
(t)(Zj0)] , (11)
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for i = 1, . . . , k and j = 1, . . . , k. In the following, we ignore models that are uncorrelated
to the high-fidelity model, and therefore we have ⇢

2
1,i > 0 for i = 1, . . . , k. We define

⇢i,k+1 = 0 for i = 1, . . . , k.
The Monte Carlo method drawsm i.i.d. realizations z1, . . . ,zm 2 D of Z and estimates

E[f (i)(Z)] by

y

(i)
m =

1

m

mX

j=1

f

(i)(zj) , (4)

for i = 1, . . . , k. The corresponding Monte Carlo estimator y

(i)
m (Z) is an unbiased esti-

mator of E[f (i)(Z)] [38]. If the variance σ

2
i 2 R (i.e., if the variance is finite), then the

MSE of the estimator y
(i)
m (Z) with respect to E[f (i)(Z)] is

e(y(i)m (Z)) = E
⇣

E[f (i)(Z)]− f

(i)(Z)
⌘2

�
=

Var[f (i)(Z)]

m

.

The cost of computing the Monte Carlo estimator are

c(y(i)m (Z)) = wim,

because the model f (i) is evaluated at m inputs, each with evaluation cost wi.

2.2. Problem formulation

Our goal is to estimate the expectation

s = E[f (1)(Z)] (5)

of the high-fidelity model f (1) with realizations of the random variable Z as inputs. We
seek an estimator with a computational budget p 2 R+ that optimally exploits the surro-
gate models f (2)

, . . . , f

(k) to achieve a lower MSE than the Monte Carlo estimator with
the same computational budget p. Stated di↵erently, we seek a multifidelity estimator
that achieves the same MSE as the Monte Carlo estimator but with a lower computa-
tional cost. We also seek an estimator that is unbiased with respect to expectation (5),
even in the absence of accuracy guarantees such as (1) on the surrogate models.

3. Multifidelity Monte Carlo

Our MFMC method derives auxiliary random variables from surrogate models and com-
bines them into the unbiased MFMC estimator using the control variate method. An op-
timization problem distributes the number of model evaluations among the high-fidelity
and the surrogate models. The optimization problem balances correlation strength and
relative computational costs such that the MSE of the estimator is minimized for a given
computational budget. We prove that the MFMC estimator is unbiased and derive the
condition under which the MFMC estimator has a lower MSE than the Monte Carlo

5

fidelity and surrogate models, i.e., models for which we can evaluate a specified input to
obtain the output, but for which we do not have access to the model operators (in an
assembled form or through their actions on a vector).

This paper is organized as follows. Section 2 describes the problem setup. Section 3
defines the MFMC estimator, derives the optimization problem to balance the number
of model evaluations, and provides an interpretation and discussion. Section 4 demon-
strates the MFMC estimator on a model that describes the bending of a locally damaged
plate and on a model of a tubular reactor that exhibits an oscillatory regime. Runtime
savings of up to four orders of magnitude are achieved. Section 5 draws conclusions.

2. Problem setup

Section 2.1 introduces the high-fidelity model, surrogate models, and discusses the Monte
Carlo method. Section 2.2 formulates the problem of interest.

2.1. Models

Let d 2 N and define the input domain D ⇢ Rd and the output domain Y ⇢ R. An
information source is a function f : D ! Y that maps an input z 2 D to an output y 2 Y.
In this work, all our information sources are computational models that are evaluated at
an input z 2 D to obtain an output y 2 Y; however, our methodology extends to other
information sources such as experiments, expert opinions and lookup tables, provided
these information sources can be evaluated for any specified input realization. In the
following, we have a high-fidelity model denoted as f

(1) : D ! Y and (lower-fidelity)
surrogate models f (2)

, . . . , f

(k) : D ! Y with k 2 N. We consider the high-fidelity model
f

(1) as our “truth” model. Note that we use the same input domain for all models
f

(1)
, . . . , f

(k). The costs of evaluating a model f (i) are wi 2 R+ for i = 1, . . . , k, where
R+ = {x 2 R : x > 0}. The costs vector is w = [w1, . . . , wk]

T 2 Rk
+, with the set Rk

+

containing k-dimensional vectors with components in R+. There are no assumptions on
the surrogate models. In particular, we explicitly avoid assumptions on the pointwise
errors

|f (1)(z)− f

(i)(z)| , z 2 D, i = 2, . . . , k , (1)

with respect to the high-fidelity model f (1). Bounds for (1) are unnecessary for our
methodology, and therefore our methodology is developed independently of the avail-
ability of such accuracy guarantees on the surrogate models.

Let ⌦ be a sample space and Z : ⌦ ! D a random variable with range D. Independent
and identically distributed (i.i.d.) realizations of Z are denoted as z1, . . . ,zm 2 D, where
m 2 N. The variance Var[f (i)(Z)] of f (i)(Z) is denoted

σ

2
i = Var[f (i)(Z)] , (2)

for i = 1, . . . , k, and the Pearson product-moment correlation coefficient is

⇢i,j =
Cov[f (i)(Z), f (j)(Z)]

σiσj
, (3)
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e(y(1)n (Z)) =


2
1
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Forecasting induced seismicity with the 3D hybrid model

The hybrid model consists of HFR-Sim and of the so-called “Seed 
model”. HFR-Sim is the in-house EGS simulator of ETH Zurich that 
can deterministically model flow and heat transport in a fractured 
reservoir. The “Seed model” is a stochastic modelling approach for 
seismicity, where a large number of fractures and of potential seismic 
events along these fractures is sampled for each simulation of the MC 
integration, and the pore-pressure value that triggers each of the 
events is computed (“Seed setup”). At each time step of the hybrid 
simulation are called:
1. The Solver: HFR-Sim approximates the solution of pore-pressure 

diffusion inside the fractures, the well and the matrix surrounding 
the fractures. Necessary input the considered injection strategy.

2. Seed Update: The stochastic model locates the seeds triggered 
with the current deterministic solution and updates the HFR-Sim 
model accordingly.

Final outputs of the hybrid model are a synthetic catalogue of induced 
seismicity, as well as a network of discrete fractures. With the latter as 
necessary input, the expected power generated due to the considered 
injection strategy can be estimated and the stimulation of an EGS can 
be optimized.

SCCER-SoE Annual Conference 2018

FASTER project

For the safe implementation of the Energy Strategy 2050, induced 
seismicity hazard from Enhanced Geothermal Systems (EGS) needs 
to be reliably forecasted and the electricity produced needs to be 
maximized for the affordable hazard. To this end, the Swiss 
Seismological Service (SED) has developed a 3D hybrid model, 
which consists of a stochastic and a deterministic part, and forecasts 
both induced seismicity and produced electricity in EGS. Main aim of 
the FASTER project is these forecasts to be concluded in almost real 
time. The project started approximately one year ago, it will last three 
years, it is funded by the Platform for Scientific Computing (PASC), 
and it brings together researchers from ETH Zurich, SED, USI 
university, and the Swiss National Supercomputing Center (CSCS). A 
speedup of approximately 670 times has been achieved up to now 
from optimizing the coding and employing more efficient algorithms.

High-performance C++ code for forecasting induced seismicity
Dimitrios Karvounis, Marco Favino, Patrick Zulian, Andreas Fink, Nur A. Fadel, Stefan Wiemer, Rolf Krause, 

Thomas Driesner

Accelerating the deterministic part

Comparison of performance of solution methods

Due to the structure of the stiffness matrices, naïve application of 
efficient solution methods, such as algebraic multigrid (AMG), is not 
trivial. While good convergence rates of AMG have been obtained in 
the early times of simulation, performances degraded when fractures 
were added, resulting in a total solution time of more than 4 hours. 
Given the relative small size of the 
linear system, direct solution methods
have also been tested, in particular:
• KLU (direct solver of Trilinos) and
• UMFPACK, which implements an

Unsymmetric MultiFrontal method. 
The first one allowed to reduce the
solution time to approx. 2 hours, 
while the latter to 8.8 minutes.

Accelerating the stochastic part

Significant speedup, which reaches up to two orders of magnitude, is 
achieved by pre-processing the sampled Seeds during their setup and 
not repeating time-costly searches over the set of all seeds for each 
new time step. During setup, the sampled seeds are divided into 
subsets according to their location. The subsets, where induced 
seismicity is possible, are located at each time step, and only the 
seeds of these subsets are updated. Triggered seeds are collected 
and are sorted by the order with which they were sampled, before the 
HFR-Sim model is updated. The latter sorting is necessary only for 
comparing the new optimized code with its initial version; i.e. the 
sorting ensures identical outputs between the two codes.

Further acceleration has been 
achieved by:
1. coupling the code 

with the Eigen library. 
2. Employing features introduced 

with c++11 (e.g. enumerators)
3. Resolving computational bottlenecks

during the updating of the HFR-Sim
mesh.

4. Employing the Counter-Based 
Random123 Number Generators, 
instead of the sprng library.

Discussion

FASTER is about to complete its first year and almost three 
orders of magnitude speedup is achieved in forecasting 
induced seismicity. Current run times allow the integration of 
the software in the Adaptive Traffic Light System (ATLS) of 
SED, where ATLS plans to assist in real time the operators of 
EGS to safely achieve the targets of Energy 2050. Due to the 
improved runtime, finer scenarios can be studied and 
fundamental research on induced seismicity can be performed 
at length scales that were previously prohibitive.

Possible next steps in this agile project include accelerating the 
convergence of the non-symmetric linear system solvers, 
improving accuracy with adaptive mesh refinement 
approaches, employing Multi Level Monte Carlo approaches for 
uncertainty quantification, the Phase Field Method for modeling 
microseismicity, and validating the analytical model of the code 
with real experimental data. preFASTER representative testcase: 

Basel’s basin benchmark
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Motivation

Numerical simulations of seismic waves in fractured rocks can result
in significant advances for the indirect characterization of such
environments. In fact, attenuation and modulus dispersion are due to
fluid flow induced by pressure differences between regions of different
compressibilities. Understanding these mechanisms in fractured rocks
may provide information not only on fracture density but also on
fracture connectivity. The main bottlenecks for these kinds of
simulations are:
- mesh generation: the creation of computational grids which resolve
numerous and complex interfaces still remains a tedious and time-
consuming task, which requires a highly degree of human interaction.
- solution of the Finite Element (FE) system due to its complicated
structure, the large jumps in the material parameters, the complex
nature of the variables in the frequency domain.

Adaptive Simulation Methods for Attenuation and Dispersion
of Seismic Waves in fractured Media
Marco Favino1,2, Jürg Hunziker2, Klaus Holliger2, Rolf Krause1

1Institute of Computational Science, Università della Svizzera italiana
2Institute of Earth Sciences, University of Lausanne

Validation

To show the effectiveness of our approach, we consider the problem of
a spherically shaped inclusion. For this problem, an analytical solution
has been provided by Pride et al. (2004). Starting from a coarse mesh
16x16x16, we applied 6 AMR steps.

Convergence

Discussion

The AMR approach allowed to reproduce the predicted attenuation
and dispersion curves with a moderate number of unknowns
compared to a uniform refinement strategy (3M vs 135M). In
particular, it confirmed the importance of refining meshes at the
interfaces where numerical inaccuracies are concentrated. The
discretization of Biot’s equations with complex FE allowed to reduce
the computational cost by a factor of 4 with respect to a real FE
implementation, employing a parallel direct solver (MUMPS). The
simulation time is about 3-4 minutes per simulated frequency.
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Methods

To enable a fast and easy meshing procedure of complex fracture
networks, we developed a novel strategy based on adaptive mesh
refinement (AMR) (Favino et al., 2018). The strategy has been
implemented in MOOSE. In particular, the new app Parrot has been
developed to simulate Biot’s equations (Biot, 1941) in the time-
frequency domain and to study attenuation and modulus dispersion of
seismic waves caused by fluid pressure diffusion in heterogenous
materials. MOOSE has also been extended in order to work with
complex variables and hence to speed-up the solution process when
parallel direct solvers are employed. The strategy comprises the
following steps:

1. Generation of a natural fracture networks, e.g. using a power-law
distribution for fractures lengths

2. Adaptive mesh refinement (AMR) starting from a uniform coarse
mesh

3. Solution of the linear system: the generated mesh is used to solve
Biot’s equations. The different levels can be employed in a multigrid
solution process. The library MOONoLith allows for the parallel
transfer between arbitrarily distributed meshes.
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Multiscale Coupling and Validation
A multiscale model has been formulated and then
validated [1]. It encompasses two submodels to tackle
the multiscale character of the problem.

In the Microscale Model we perform detailed impact
simulations that take into consideration all the important
physical effects. This results in the erosion rate for each
impact condition.

In the Macroscale Model the turbulent sediment
transport is computed. Each time a sediment impact is
detected, the results of the microscale model are used,
resulting in the macroscopic erosion accumulation.

Towards Multiscale Numerical Simulations of Pelton Turbine Erosion
Sebastián Leguizamón, Ebrahim Jahanbakhsh, Audrey Maertens, Siamak Alimirzazadeh, François Avellan

Multiscale Erosion Simulation of a Pelton Bucket

Motivation and Problem Description
The hydro-abrasive erosion of turbomachines is a
significant problem worldwide. In the context of the
Energy Strategy 2050, it is a problem which will become
more severe in the future due to the retreat of glaciers
and permafrost caused by climate change.
Our objective is to provide the capability of simulating
the erosion process using the Finite Volume Particle
Method [1]. Such simulations will become advantageous
for the design and the operation of the machines.
The erosion of hydraulic turbomachines is an inherently
multiscale process, so its simulation is complicated. It
demands a multiscale modeling approach.

o Impact condition distributions
o Sediment flux against the surface
o Erosion distribution
o Global erosion rate

Macroscale
output

o Erosion rate  f(αi , Cj)
o Restitution coefficients  f(αi , Cj)

Microscale
output

Sequential
coupling

Material Characterization
To perform realistic multiscale simulations
of the erosion of turbines it is necessary
to perform a characterization of the
material: stainless steel 13Cr-4Ni.
A combination of quasi-static tension
tests and split-Hopkinson tension bar
tests is used to find the parameters of the
Johnson-Cook Model that best describe
the material behavior.
A genetic algorithm was programed to
find the optimum set of model parameters
that fit the experimental data obtained.

Sharp Sediment Impacts against Solid

Slurry Jet Eroding a Flat Plate
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Multiscale simulations of a static Pelton
bucket at full prototype-scale are currently
being computed. They consider realistic
erosion conditions such as the sediment size
distribution and concentration.
The computed erosion distributions and erosion
rate will be compared with experimental data to
be provided by our industrial partner for a final
validation of the model for industrial use.

Split-Hopkinson Bar Experiment

High Strain-Rate Material Response and Johnson-Cook Model Fit




