

Annual Conference White Paper

Prof. F. Avellan, EPFL November 2, 2020

Swiss Confederation

Innosuisse - Swiss Innovation Agency

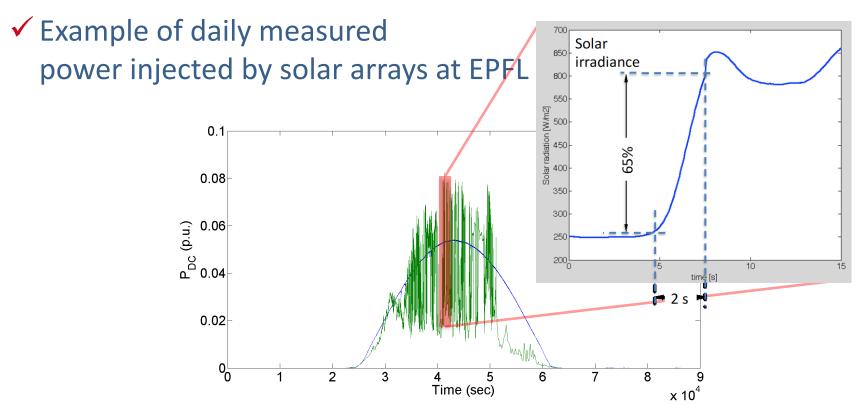
Scope

- Power system needs for flexibility
- Challenges for hydroelectric power plants
- Hydroelectric flexibility technologies
- Recommendations

Scope

- Power system needs for flexibility
- Challenges for hydroelectric power plants
- Hydroelectric flexibility technologies
- Recommendations

Power System Flexibility Needs

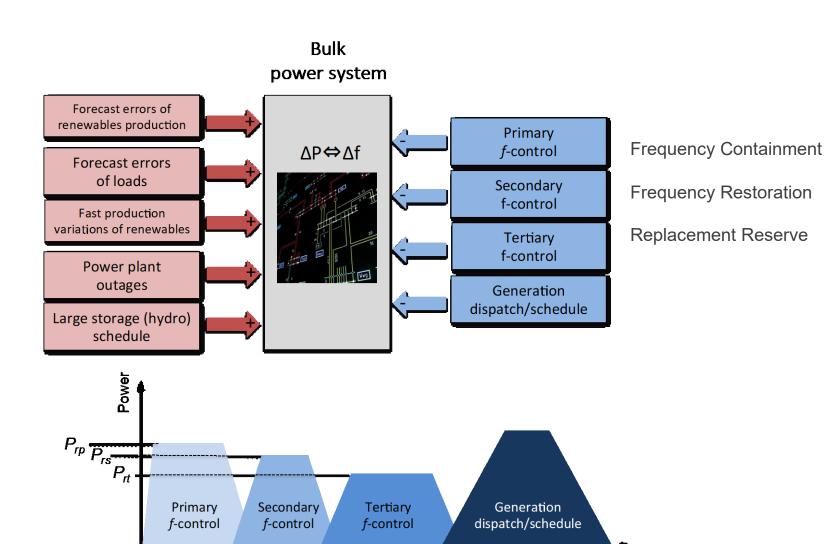


- Securing Electricity Supply
 - ✓ Matching the demand
 - ✓ Balancing intermittent generation
 - ✓ Mitigating hazards
- Reserve Scheduling and Demand Forecast
- Time Scales
 - ✓ Week
 - ✓ One day ahead
 - ✓ Seconds

Time-scales of PV volatility

Short-term PV Solar power volatility : seconds

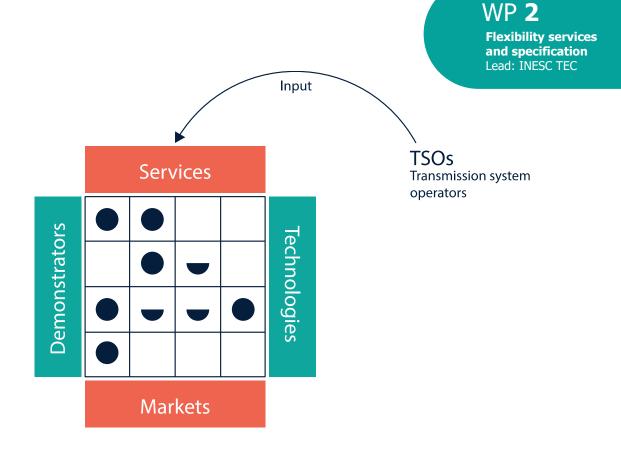
Forecast performance


 Example of deviation from predicted (24h-ahead) and actual Global Horizontal Irradiance (GHI)
 @ EPFL, August 21-26, 2018

Reserve scheduling

0-s

30-s


15-min

60-min

Time

ANCILLARY SERVICES MATRIX

The ancillary services matrix will play a key role in providing a mapping of hydro technology supporting flexibility services and how they enable hydropower to take part in new power markets. It will combine information about the latest flexibility products, flexibility markets and innovative hydroelectric technology solutions that enhance the ability of HPPs to respond to EPS flexibility needs.

Demonstrators

- Demonstrator (Z'Mutt)
 Lead: ALPIQ
- Demonstrator (Frades 2)
 Lead: EDP P (Voith)
- 6 Demonstrator (Grand Maison) Lead: EDF (GE)
- Demonstrator (Alqueva)
 Lead: EDP CNET (GE)
- Demonstrator (Alto Lindoso & Caniçada) Lead: EDP CNET (GE)
- Demonstrator (Vogelgrün) Lead: EDF (Andritz)

The Hydropower Extending Power System Flexibility (XFLEX HYDRO) project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857832

ANCILLARY SERVICES MATRIX

					AN	CILLARY SERVI	CES					
		SYNCHRONOUS INERTIA	SYNTHETIC INERTIA	FAST FREQUENCY RESPONSE (FFR)	FREQUENCY CONTAINMENT RESERVE (FCR)	AUTOMATIC FREQUENCY RESTORATION RESERVE (aFRR)	MANUAL FREQUENCY RESTORATION RESERVE (mFRR)	REPLACEMENT RESERVE (RR)	VOLTAGE/VAR CONTROL	BLACK START		
	Sites/Timescale	0 s	< 500 ms	0.5-2 s	< 30 s	30 s - 15 min	< 15 min	> 15 min	<1s	N/A		
	Z' MUTT	O P	T P	T P	T P	T P	T P	T P	T P		FS	
											VS (FSFC)	
											VS & SPPS	
	EDADES O										FS	
	FRADES 2	T P	T P	T P	T P	O P	O P	D P	D P		VS (DFIM)	
	— psp V										VS & SPPS & HSC	
	GRAND MAISON	O P	T P	T P	1 P	(I) (P)	(I) (P)	T P	D P		FS	2
ı,											FS, SPPS & HSC	OLUTION
DEMONSTRATIONS		D P	T P	T P	T P	1 P	T P	(I) (P)	(I) (P)		FS	
KAI	ALQUEVA										FS & SPPS	2
NSI											FS & HSC	TECHNOLOGICAL SOLUTIONS
EΜO											FS, SPPS & HSC	
_											VS (FSFC) & SPPS	
	ALTO LINDOSO &										FS	
	CANIÇADA										FS & SPPS	
											VS (FSFC/DFIM) & SPPS	5
											FS Kaplan	
	VOGELGRUN										FS, SPPS & HBH	
											VS (FSFC) Propeller	
											VS, SPPS & HBH	
	Original terminology	Inertia		Primary frequency control (FC)		Secondary (FC)	Tertiary (FC)	ry (FC)	Voltage control	System re-start		
	Emerging frameworks	BILATERAL CONTRACTS (GB)	-	GB/IR/NORD	FCR coop.	PICASSO/IGCC	MARI	TERRE	BILATERAL CONTRACTS	BILATERAL CONTRACTS		

MARKET FRAMEWORK

3 3.	Reversible Francis Unit(s)
*	Francis unit(s)
Ö	Pelton unit(s)
8	Kaplan/propeller unit(s)
	Electro-chemical battery

FLEXIBILITY TECHNOLOGY

SPPS	Smart Power Plant Supervisor (XFLEX product)
FS	Fixed speed
VS	Variable speed
VS (FSFC)	VS with full size frequency converter
VS (DFIM)	VS with doubly fed induction machine
HSC	Hydraulic short circuit (PSP)
НВН	Hydro-battery-hybrid

Continental European market Rep. & Northern Ireland market

MARKET FRAMEWORKS

CE

NORD	Nordic market
EBGL IGCC PICASSO	EU Electricity Balancing Guideline (2017/2195) International Grid Control Cooperation Platform for International Coordination of Automated Freque Restruction and Stables System Departion (aFRR)

Manually Activated Reserves Initiative (mFRR) TERRE Trans European Replacement Reserves Exchange (RR)

CAPABILITY OF ANCILLARY SERVICE

Not currently capable of providing the service
Capable, but could be enhanced
Currently capable of providing the service

Challenges

Hydroelectric Unit

- ✓ Limited Operating Range (Stability, Cavitation)
- ✓ Maintenance costs (Erosion, Wear & Tears)
- ✓ Impact on the residual life-time (Fatigue)

Power plant

- ✓ Unit Dispatch Control
- ✓ Hydraulic Structure Safety (Transient)

Environment

- ✓ Hydrological forecasting
- ✓ Hydropeaking impact
- ✓ Renaturation
- Ancillary Service Market

Recommendations: Flexibility Technologies

Hydroelectric Unit Digitalization

- ✓ Enhanced forecast tools
- ✓ Advance operation tool integrating the unit operation knowledge *i.e.* engineering data, model tests and simulation data, commissioning data and operation data
- ✓ Predictive Maintenance

Variable Speed Power Electronic

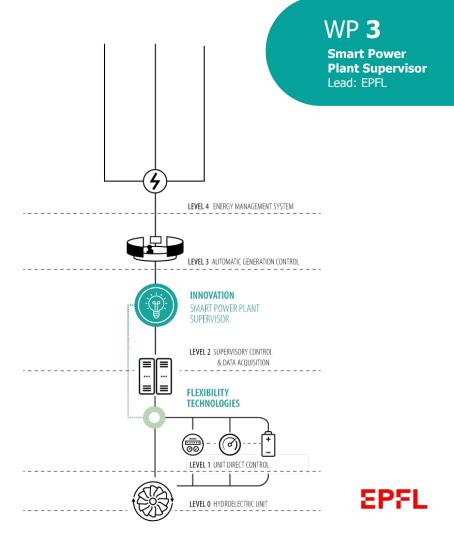
- ✓ Doubly Feed Induction Machine (Linth-Limmern – AXPO, Nant de Drance – ALPIQ/SBB)
- ✓ Full Sized Frequency Controllers (Grimsel 2)

Hydraulic Short Circuit (Pumped Storage Power Scheme)

- ✓ Design stage (Veytaux 2)
- ✓ Operation Extension (Nant de Drance)

SMART POWER PLANT SUPERVISOR (SPPS)

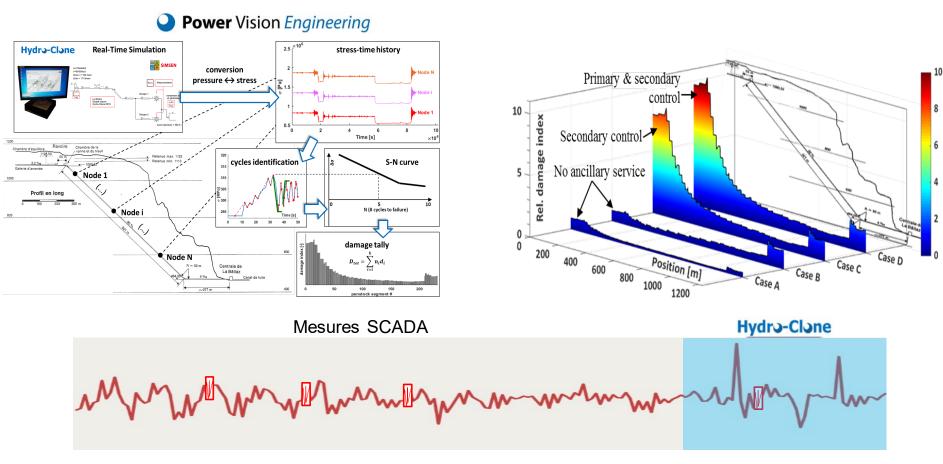
Brings the turbine dynamics and conditions knowledge into advanced control unit operation and predictive maintenance


AFTER
Flexible range of operation based on a multidimensional analysis including energy grid needs

Multiple operating points depending on needs

Function 1

Function 2


Function 3

Vagnoni, E. et al. "Analysis of the operation time history of a Kaplan turbine in the Vogelgrun run-of-river power plant to extend the operating conditions and provide flexibility to the power system", Hydro2020 IEA Session on Session 16 – IEA Overcoming the barriers to development of hidden hydro opportunities.

Penstock Fatigue Monitoring

Dreyer, M. et al. "Digital clone for penstock fatigue monitoring", IAHR Workshop on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, October 9-11, 2019, Stuttgart, Germany, published by IOP Conf. Series: Earth Environ. Sci. Vol. 405.

Recommendations: Flexibility Technologies

Unit Hybridization

- ✓ About 10% the rated power to handle the fast change instead of the governing system (XFLEX Hydro Vogelgrün Demonstrator, France)
- ✓ Buffering power change to mitigate hydropeaking effect by decreasing the rate of discharge ramp up or slow down

Environment

- ✓ Seamless forecasting of stream/river discharge at the time scale from a few minutes to weeks)
- ✓ Compensation Basin

DEMONSTRATOR

VOGELGRÜN FRANCE

39MW

1959

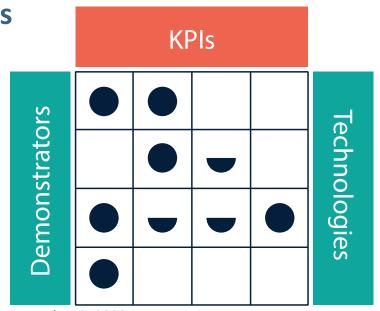
BATTERY/ **TECHNOLOGY**

Vogelgrun is a run-of-river hydropower plant located in France near the border with Germany. The plant has four low head turbines, and in XFLEX HYDRO one unit will be equipped with a battery hybrid. The battery system will add energy storage to share response capability with the hydraulic unit, and use a master control to optimise flexibility services and wear and tear.

Key Objectives:

- Hybridise the turbine unit with a battery of suitable energy capacity and power converter rating, to improve fast and dynamic frequency response of the combined system.
- Significantly reduce turbine wear and tear, and quantify it.
- Evaluate the possibility of upgrading the 39 MW fixed-speed, double-regulated Kaplan turbine unit - with an enhanced variable speed, single-regulated propeller unit.

Demonstrator (Vogelgrün) Lead: EDF (Andritz)



Recommendations: KPI Matrix

- Extended operation range
- Fast Start and Stop
- Fast Ramp-up/Ramp-down
- Fast turbine-pump / pump-turbine transition
- Optimized maintenance intervals
- Extended availability
- Increased annual efficiency
- Performance maximization
- Digitalization

Conclusions

- Flexibility needs make hydroelectricity an enabler for massive deployment of Solar PV and Wind Resources
- Strongly driven by ancillary service market design (swissgrid)
- Flexibility Deployment Methodology

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Thank you All!

Prof. F. Avellan, EPFL November 2, 2020

In cooperation with the CTI

Energy

Swiss Competence Centers for Energy Research

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI