

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY

Swiss Potential for Hydropower Generation and Storage White paper

Robert Boes, ETH Zürich

SCCER SoE Annual Conference November 2, 2020

Outline

Introduction

- Potential changes in HP generation and storage
- Challenges and opportunities for hydropower
 Synthesis

Recommendation

Fieschergletscher and Wysswasser (Picture: VAW 2013)

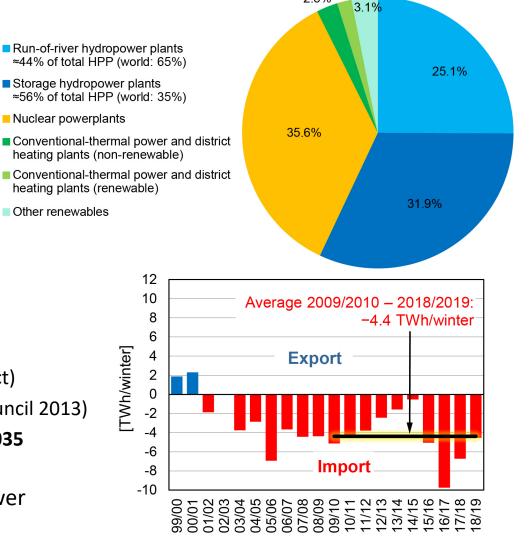
Introduction

The present and future role of HP

Present:

Central pillar of Swiss electricity generation portfolio

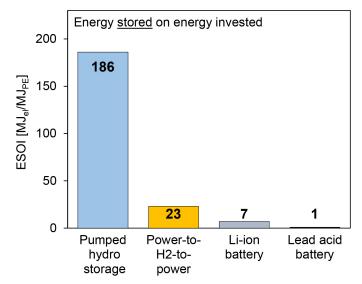
- ~57% of total electr. generation
- Electricity imports in winter half year

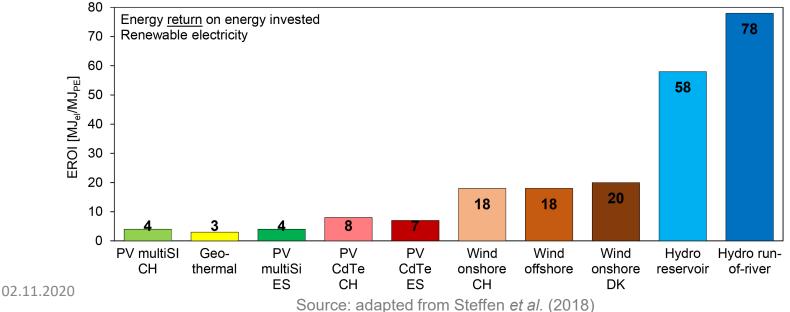

Future:

Swiss Energy Strategy (ES) 2050

- Production targets
 - ≥ **37.4 TWh/yr in 2035** (Energy Act)
 - **38.6 TWh/yr in 2050** (Federal Council 2013)
 - increase of \geq 5 TWh/winter by 2035 (ElCom, 2020)
- Increasing need for regulating power

2.5%^{1.7%}




Introduction

HP strengths and weaknesses

Hydropower is favorable with respect to:

- Energy Return on Energy Investment (EROI)
- Energy Stored on Energy Invested (ESOI)
- Life-Cycle Assessment (LCA)
- Green-House Gas (GHG) emissions

Introduction

HP strengths and weaknesses

Hydropower can have negative impacts on terrestrial & aquatic ecosystems

Longitudinal connectivity Climatic and Watershed Setting (e.g. fish & sediment continuum) Biogeography - Precipitation - Geology - Temperature - Land Cover/Us **Residual flow reaches** Dam(s Hydro-/thermopeaking Flow Sediment Thermal Chemical Biota Regime Regime Regime Regime **Dam Operations** Dam Size HYDRAULIC RESIDENCE TIME Effects of dam-reservoir systems on Chemical Water Thermal Dispersal fundamental riverine bio-physical Sedimentation Transformation Stratification Storage Barrier processes Reduced Modified Altered Altered Biotic Sediment Energy Flow Thermal Fragmentation Base Regime Transport Regime Source: Poff & Hart (2002) Local and Landscape Effects

Generation: new schemes, upgrades and renewals

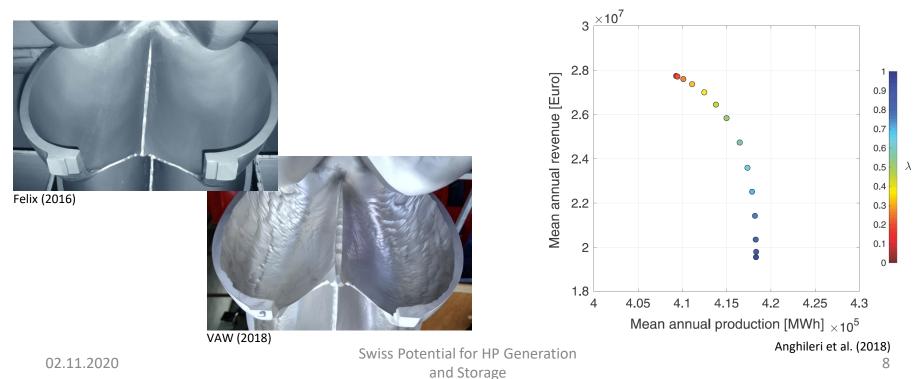
- More than 90% of Swiss HP potential already exploited
- Multiple studies on HP potential by SWV, SFOE, SCCER-SoE

	Annual generation [TWh/year]	Winter semester generation [TWh/winter]
New small and large HP	0.7 – 1.7	0.3 – 0.7
Upgrades/extensions	0.4 - 1.5	0.2 - 0.6
Renewal/refurbishment	0.5 - 1.0	0.2 - 0.4
Periglacial HP	0.0 - 0.8	0.0 – 0.5
Dam heightening	0.0 - 0.2	0.2 – 1.5

 \rightarrow Dam heightening may significantly contribute to winter production

Storage: periglacial HP and dam heightening

	Stored energy [TWh]
Dam heightening	0.2 – 1.5
Periglacial HP	0.0 - 1.0
Renewal/refurbishment	0.1 - 0.2
New small and large HP	-
Upgrades/extensions	-


Heightening of Vieux Emosson dam (2012-2015) by +21.5 m (39%) → +93% in volume

Periglacial reservoir Trift Glacier 145 GWh/year; 215 GWh of storage

Improved operation

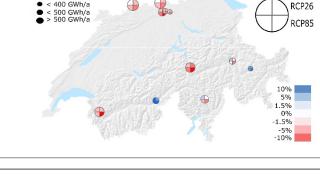
- Sub-seasonal runoff forecasts can reduce spillage and increase generation
- Real-time suspended sediment monitoring to reduce hydro-abrasion
- Dualism between maximized production and maximized revenue
 - \rightarrow New incentives needed (e.g. flexible water fees)?

Environmental aspects

Swiss Waters Protection Act (WPA) requires (until 2030):

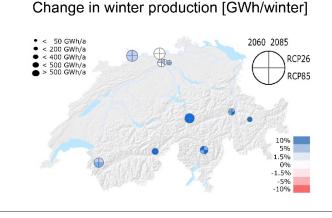
- Minimum residual flow
 - dynamic / non-proportional flows can be beneficial for ecology and HP system efficiency
- Limitation of hydro- and thermopeaking
 - see Whitepaper "Flexibility"
- Facilitation of up-/downstream fish migration
 - new technical solutions for d/s migration needed
- Limitation of bed load budget modification
 - flushing, bypassing, venting, dredging, replenishment
 - ightarrow no estimates for production loss as measures are not yet defined

	Annual generation [TWh/year]	Winter semester generation [TWh/winter]					
Increased residual flow	-3.6 to -1.9	-1.5 to -0.8					
Fish d/s migration measures	-1.0 to -0.2	-0.4 to -0.1					


Climate change effects

Energy transition coincides with a significant change in climate, which:

- affects annual and seasonal HP generation
- alters sediment input
- modifies the occurrence of natural hazards

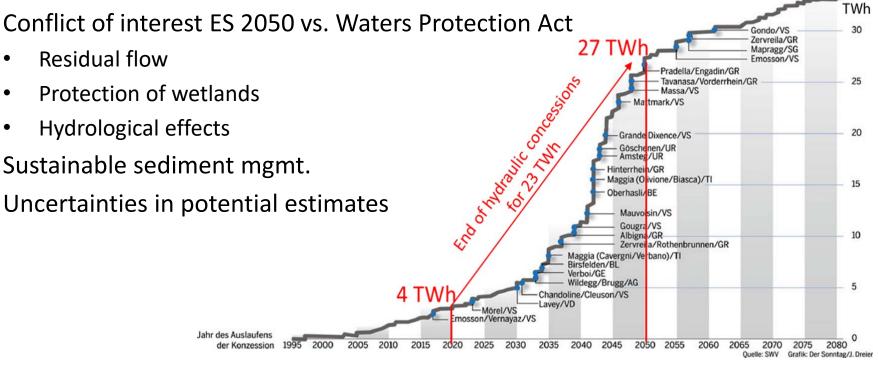

Run-of-river HP (values refer to 2060):

- annual: -0.3% (RCP2.6), -2.9% (RCP8.5)
- winter: +6.4% (RCP2.6), +8.4% (RCP8.5)
 Storage HP:
- No significant change in annual precipitation
- Significant losses in ice melt-dominated catchments

Change in annual production [GWh/year]

50 GWh/a

2060 2085


Challenges and opportunities

Challenges

Market situation & regulatory framework

- Amortization treaties
- Concession renewals

Challenges and opportunities

Opportunities

New glacier lakes

- Timeframe?
- Potential source of natural hazards

Multipurpose reservoirs – potential reduction in HP generation

- Irrigation (Aare catchment / Seeland, Val de Bagnes)
- Tourism

Natural hazard protection

- Flood protection
- Protection against mass movement

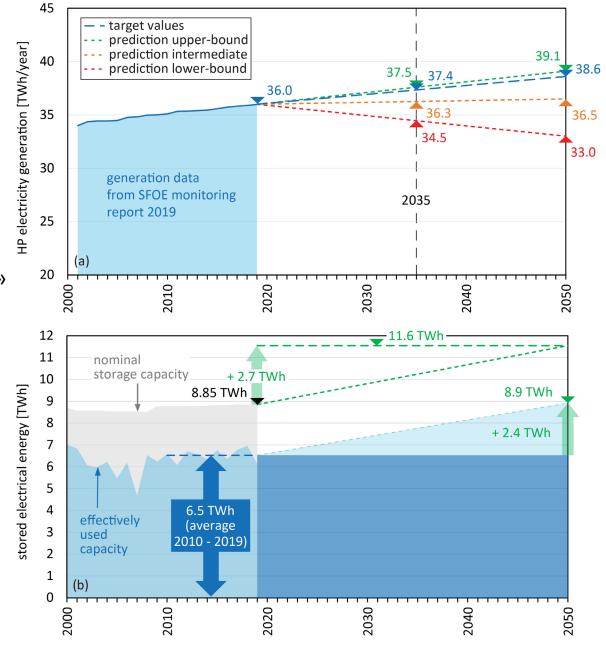
\rightarrow How to monetarize these incentives?

Synthesis

Increased or reduced generation and storage (with reference to 2019) due to	annual generation [TWh/year]			winter semester generation [TWh/winter]			sto	Anno- tation					
scenario	lower	interm.	upper	lower	interm.	upper	lower interm.		erm.	upper			
new small- and large-scale HP plants (except periglacial HP)	0.7	1.2	1.7	0.3	0.5	0.7	-	-	-	-	-	-	a)
new HP storage plants in periglacial environment	0	0.4	0.8	0	0.2	0.5	0	0	0.5	200	1.0	400	b)
upgrade and extension of existing HP plants	0.4	1.0	1.5	0.2	0.4	0.6	-	-	-	-	-	-	c)
dam heightening	0	0.1	0.2	0.2	0.8	1.5	0.2	80	0.8	280	1.5	470	d)
renewal and refurbishment of existing HP schemes	0.5	0.8	1.0	0.2	0.3	0.4	0.1	-	0.1	-	0.2	-	e)
increased residual flow releases according to Waters Protection Act	-3.6	-2.5	-1.9	-1.5	-1.0	-0.8	-	-	-	-	-	-	f)
fish protection and downstream migration measures at run-of-the-river low-head HP plants	-1.0	-0.4	-0.2	-0.4	-0.2	-0.1	-	-	-	-	-	-	g)
Total changes	-3.0	0.5	3.1	-1.0	1.1	2.8	0.3	80	1.4	480	2.7	870	

Conclusions:

- Target of ES 2050 will only be met in "upper-bound generation" scenario
- In a more realistic "intermediate" scenario the generation gains from both extensions and new constructions are countered by reductions driven by environmental mitigation measures
 - \rightarrow hardly any net increase in annual generation
 - \rightarrow ~1.1 TWh/winter increase in winter generation


Synthesis

HP annual generation

- «on track» for «upper-bound»
- «flat line» for intermediate scenario
- decrease for «lower bound»

HP storage

- Figure for «upperbound» scenario
- +2.4 TWh effective storage (~55% of winter imports 2010-2019)

Recommendations for policy makers

- Prioritize renewals, upgrades and extensions of existing HP schemes (including more storage by dam heightening)
- Consider **new HP storage schemes** in areas of retreating glaciers (periglacial sites) by weighing various interests
- Act now! the planning, licensing and realization of major HP projects takes at least 15 years
- **Take additional actions** towards achieving the goals of the ES2050 (framework conditions and incentives)
- Realize potential projects on a priority scheme based on sustainability criteria

Thanks for your attention!

Thanks for all who contributed !!

SWISS COMPETENCE CENTER for ENERGY RESEARCH SUPPLY of ELECTRICITY