

Hydropower in future market scenarios

Energy Economics Group, Paul Scherrer Institute (PSI)

Martin Densing

Co-workers: Evangelos Panos, Kannan Ramachandran, Tom Kober

In cooperation with the CTI

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Commission for Technology and Innovation CTI

Annual Conference 2020

Task 4.2: Global observatory of electricity resources

- Models & Scenarios:
 - Electricity markets (CH + surrounding countries)
 - European electricity system, global energy system
- Review of Swiss Electricity Scenarios
- etc.

(Stored) hydropower:

- Challenges in modeling of stored hydropower
- Profitability in future market scenarios

How to model stored hydropower?

2 years of stored hydropower in Switzerland (monthly):

• Test of economic dispatch model: Can historical patterns be replicated? – Tests not common! 3

Modeling: Monthly (24 time-steps)

• Deterministic optimization model with monthly averaged wholesale electricity prices; no pumping

SCCER SOE

Modeling: Daily (730 time-steps)

• Deterministic optimization model with daily averaged wholesale electricity prices

Model: hourly (17,520 time-steps)

• Deterministic optimization model with hourly wholesale electricity prices

• Caveat: ca. 100 storage reservoirs, multiple actors, etc.

Probabilistic model: 24 time-steps

• Probabilistic model: Dispatch depends on statistical price distribution of current month; storage level fulfilled on "average" only; inflow still deterministic

Advantages:

- No artefact patterns (caused by (too) detailed time-steps)
- Numerical: Small problem size, quick solve time
- Yields dispatch-thresholds
- Extension to: Optional production for spinning reserve

Disadvantages: Model is non-linear; dispatch-thresholds in fact only on «average» correct

Future electricity price scenarios

Scenarios from two studies:

«PowerDesign» (SFOE)

Price model: Fundamental agentbased model by KIT (Karlsruhe) Hydropower model: previous probabilistic modeling approach Scenarios:

- «CRM»: Some capacity remuneration mechanisms present → less price peaks
- "EOM": Energy only markets (i.e. without CRM) → high peaks

«SwissHydro» (VSE & EWZ)

Price model: Cross-Border
Electricity Market model BEM;
fundamental; Nash-equilibrium
with conjectural variations.
Hydropower model: BEM
Scenarios:

- Low CO₂ scenario (NEP+E, Europe: EUCO scenario)
- No annual imports
- Today's fuel + CO₂ price

BEM: cross-Border Electricity Market model

Densing, M., Kannan, R., Panos, E., & Kober, T. (2018). Long term role of Swiss hydropower from an energy systems and market perspective. Zukunftspotenzial der Schweizer Wasserkraft durch Synergien im Energiesystem und Markt Perspektiven. Villigen PSI, Switzerland: Paul Scherrer Institute. Final Report. <u>https://www.dora.lib4ri.ch/psi/islandora/object/psi:25854</u>

Zimmermann, F., Densing, M. et al. (2018). Impact of different market designs in the CWE market area on electricity prices and on the competitiveness of Swiss hydropower (PowerDesign)., ARAMIS Swiss Federal Research Database https://www.aramis.admin.ch/Dokument.aspx?DocumentID=50031

Panos, E., Densing, M. (2019). The future developments of the electricity prices in view of the implementation of the Paris Agreements: Will the current trends prevail, or a reversal is ahead? *Energy Economics*. DOI: <u>10.1016/j.eneco.2019.104476</u>

Future price scenarios: Cycling

Example: 1 GW PSP, no natural inflow, large lower reservoir, time horizon: a week

Τu

Price distribution in (extreme) scenario "EOM" 2050

Tu

Th

production

Zimmermann et al. (2018)

pumping

More volatile electricity prices in 2050 leads to more cycling

 \rightarrow Operational challenges of more frequent switches without efficiency loss (here not considered)

Future price scenarios: Profitability

Study «PowerDesign»

- High price-level increase caused by CO₂- and natural-gas-price increase (a common assumption in many energy scenarios)
- Price variations (PSPs need that) increase later (2050)

Study «SwissHydro»

Under "today's" fuel and CO₂ price in year
 2035+, average profitability may still be low

(...CO₂ price in ETS increased slightly in 2017-2020)

Can spinning reserve save hydropower?

- Derivation of (fair) price bounds for spinning (secondary) reserve power
 - E.g. lower bound: Capacity payment (per time unit, per MW) >= Mean absolute deviation from median (MAD) of electricity prices

 \rightarrow If reserve markets become more liquid, some historical service-price levels may be difficult to maintain

Conclusions & Outlook

- Economic storage modeling
 - Non-trivial to balance: accuracy and solvability (despite increasing computing power)
 - Probabilistic (not fully stochastic) model allows time-step reduction (e.g. 8760 \rightarrow 12)
- Prospects of Swiss (stored) hydropower
 - Spinning reserve?
 - Service price linked to energy price volatility (opportunity cost of not going to energy market)
 - Improvement of wind & solar forecasts technically still possible
 - What drives future market prices in Switzerland?
 - Prices likely still to be influenced by load-periods with (gas) peak plants, despite new renewables
 - Hence, CO₂- and gas-price will still (partially) drive revenues of hydropower
- Research beyond SCCER (2 PhD thesis until 2023/24):
 - Risk-averse decision-making in electricity markets with storage
 - Profitability of small decentralized storage (battery, hydrogen)