

The role of hydro power, geothermal and CCS in net-zero emission scenarios

Gianfranco Guidati, Adriana Marcucci, and many more

sccer | future energy efficient buildings & districts

Swiss Competence Cente

Storage

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

Joint Activity Scenarios & Modelling

SwissMod

- Electricity market model
- · Impact of climate on hydro power
- System adequacy of transmission grid
- Cross border electricity prices

SwissRes

- Bottom-up building stock model
- Scenarios for building renovation costs

CESAR

Drivers

climate, etc

Population, GDP,

- Bottom-up building stock model
- Scenarios for building renovation costs

- Modelling of industrial processes
- Scenarios for energy savings and costs

Distribution grids

- Bottom-up optimization distribution grids
- PV hosting capacity and storage needs

...and more on

- Climate impact on HDD/CDD
- · Potential of solar thermal
- Potential of biomass
- Etc.

Sectoral models

- Swiss Times Energy System Model
- Technology-rich bottom up model
- Optimization of full energy system
- Transition of today to 2060

EPFL

- Swiss Energyscope
- Simpler bottom up model
- Optimization of full energy system
- · Fast, allows for Monte Carlo analysis
- Snapshot model

Energy system models

Business-as-usual and Net-zero scenarios for Switzerland 2050+

2

SES

STFM

Definition of net-zero (Mt_{CO2,eq})

The energy system

Spotlight on SCCER-SoE technologies

- Hydro power
 - Increase of reservoir volume by dam heightening
 - Importance of flexibility
- Geothermal energy
 - Optimal use
- Carbon Capture & Storage
 - Storage volumes
 - Sources of CO2

Swiss Energyscope (ETH) Variants of CLI scenario

n with Europa	Come together Integration with Europe • CO ₂ export < 30 Mt/a	Imagine Best of all worlds!
Integratio	Yesterday No experiments!	Revolution New technologies welcome! Geothermal heat 10 TWh/a Seasonal thermal storage Hydro reservoirs +2 TWh More forest wood +3.7 TWh/s

Acceptance of new technologies

Swiss Energyscope (ETH) Total electricity consumption / generation (TWh/a)

What is the value of increasing generation, flexibility and seasonal storage volumes?

Hydro power Demand for flexibility, pumped storage

Large demand for flexibility of storage plants + pumped hydro storage to manage photovoltaic generation

Hydro power Demand for flexibility, pumped storage

Come together	Imagine
Yesterday	Revolution

10

Hydro power Increase of reservoir storage volume (TWh)

Imagine

Come together

Yesterday

Where to best use geothermal energy?

Geothermal energy Optimal usage

What is the value of CCS, where is it applied?

Carbon capture and storage (CCS) Marginal CO2 avoidance costs (CHF/t_{co2})

The Swiss climate targets cannot be reached without CCS

Carbon capture and storage (CCS) Source of captured CO2

Carbon capture and storage (CCS) Annual storage of CO₂ (Mt/a)

Hydro power, geothermal and CCS

- SCCER-SoE picked the right subjects!
- All technologies are essential for reaching the Swiss climate targets
 - Flexible hydro power plants act as a partner to photovoltaics
 - Increasing reservoir volume helps in winter
 - Geothermal supplies valuable low-temperature heat and it helps the electricity sectors by reducing load on heat pumps
 - CCS allows to generate negative emissions which are needed to compensate other sectors
- These technologies will make their impact for a reasonable CO₂ price of a few hundred CHF per ton_{CO2}

Thank you for your attention!

Visit us on www.sccer-jasm.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency